Answer:
The value of x=9 and value of y= -7
Step-by-step explanation:
We need to solve the matrix equation for x and y
We are given:
![\left[\begin{array}{cc}-2x&6\\1&-8\\\end{array}\right] +2\left[\begin{array}{cc}5&-1\\y&6\\\end{array}\right] =\left[\begin{array}{cc}-8&4\\-13&-13\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2x%266%5C%5C1%26-8%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2B2%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%26-1%5C%5Cy%266%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-8%264%5C%5C-13%26-13%5C%5C%5Cend%7Barray%7D%5Cright%5D)
First multiply 2 with terms inside the matrix
![\left[\begin{array}{cc}-2x&6\\1&-8\\\end{array}\right] +\left[\begin{array}{cc}10&-2\\2y&12\\\end{array}\right] =\left[\begin{array}{cc}-8&4\\-13&-13\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2x%266%5C%5C1%26-8%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D10%26-2%5C%5C2y%2612%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-8%264%5C%5C-13%26-13%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Now adding matrices on left side
![\left[\begin{array}{cc}-2x+10&6-2\\1+2y&-8+12\\\end{array}\right] =\left[\begin{array}{cc}-8&4\\-13&-13\\\end{array}\right]\\\left[\begin{array}{cc}-2x+10&4\\1+2y&4\\\end{array}\right] =\left[\begin{array}{cc}-8&4\\-13&-13\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2x%2B10%266-2%5C%5C1%2B2y%26-8%2B12%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-8%264%5C%5C-13%26-13%5C%5C%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2x%2B10%264%5C%5C1%2B2y%264%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-8%264%5C%5C-13%26-13%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Now both sides are equal , so we can say that

Solving equations and finding values of x and y
Finding value of x

Finding value of y

So, value of x=9 and value of y= -7
We have the 2 equations
1- ) 5x-8y=6
2-) -6x-3y=18
multiplying the first equation by 3 and the second equation by 8 then subtracting
1-) 15x-24y=18
2-) -48x-24y=144
-48x-24y=144
(-) 15x-24y=18
-------------------------------------
-63x = 126
x=-2
substituting in equation 1
5(-2)-8y=6
-10-8y=6
-8y=16
y=-2
the soultion is (-2,-2)
1. The commutative property is not true for addition.