Question:
<em>The diagram shows the potential energy changes for a reaction pathway.</em>
Part 1: Does the diagram illustrate an endothermic or an exothermic reaction? Give reasons in support of your answer.
Part 2: Describe how you can determine the total change in enthalpy and activation energy from the diagram and if each is positive or negative.
Answer:
Part 1: The diagram illustrates an endothermic reaction as the products has a higher potential energy than the reactants do. There is a positive slope of the diagram and there is enough energy to meet the activation energy requirement.
Part 2: You can determine the total change in enthalpy and activation energy from the diagram by the potential energy of the reactants. If the reactants have a high potential energy, then the enthalpy is also high, and if the reactants have a low potential energy, then the enthalpy is low. You can determine if the diagram is positive or negative by knowing if its an endothermic or exothermic reaction. An endothermic reaction is positive because the products are higher than the reactants and a exothermic reaction is negative because the reactants are higher than the products.
Because with that the mitochondria will make ATP (energy) for the cell and your body
I just learned that today XD
Answer:
The mentioned case is an illustration of the missense mutation. A missense mutation is a kind of nonsynonymous substitution, that is, it is a mutation in which a variation in a solitary nucleotide leads to the formation of a codon, which encrypts for a distinct kind of amino acid.
When a missense mutation takes place within a DNA, a modification in one of the RNA codon sequences results at the time of transcription. This change in codon will ultimately result in the formation of a different amino acid, which gets presented within a protein at the time of translation. Like in the given case, a change in codon resulted in the substitution of the amino acid tyrosine with an amino acid cysteine.
They all have these traits: <span>Cellular organization, Reproduction, Metabolism, Homeostasis, Heredity, Response to stimuli, Growth and development, and <span>Adaptation through evolution.</span></span>