Cost per ounce means you take the cost and divide it by the cost:
<span>3.36 / (21/2) </span>
<span>division of fractions changes to the multiplication of the reciprocal: </span>
<span>3.36 * (2 / 21) </span>
<span>3.36 and has 21 as a factor, so let's cancel it: </span>
<span>0.16 * 2 </span>
<span>$0.32 per ounce</span>
well, this is just a matter of simple unit conversion, so let's recall that one revolution on a circle is just one-go-around, radians wise that'll be 2π, and we also know that 1 minute has 60 seconds, let's use those values for our product.
![\cfrac{300~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{~~\begin{matrix} min \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }\cdot \cfrac{2\pi ~rad}{~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }\cdot \cfrac{~~\begin{matrix} min \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{60secs}\implies \cfrac{(300)(2\pi )rad}{60secs}\implies 10\pi ~\frac{rad}{secs}\approx 31.42~\frac{rad}{secs}](https://tex.z-dn.net/?f=%5Ccfrac%7B300~~%5Cbegin%7Bmatrix%7D%20r%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7B~~%5Cbegin%7Bmatrix%7D%20min%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%5Ccdot%20%5Ccfrac%7B2%5Cpi%20~rad%7D%7B~~%5Cbegin%7Bmatrix%7D%20r%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%5Ccdot%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%20min%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7B60secs%7D%5Cimplies%20%5Ccfrac%7B%28300%29%282%5Cpi%20%29rad%7D%7B60secs%7D%5Cimplies%2010%5Cpi%20~%5Cfrac%7Brad%7D%7Bsecs%7D%5Capprox%2031.42~%5Cfrac%7Brad%7D%7Bsecs%7D)
The one that isn’t rationals is B.
Are you trying to graph it because it is in y=mx+b form.
Step-by-step explanation:
if there is nothing missing, we have
x + 25/-8 = -6
in order to compare or add or subtract fractions, we need to bring them all to the same denominator (bottom part).
remember, integer numbers are fractions too. like here
-6 = -6/1
25/-8 = -25/8
so, how can we bring -6/1 to .../8 ?
by multiplying 1 by 8.
but we cannot multiply only the denominator by 8. otherwise we would suddenly have
-6/8
and is -6/8 = -6/1 ? no, certainly not.
to keep the original value of the fraction we have to do the same multiplication also with the numerator (top part).
so, we actually do
-6/1 × 8/8 = -48/8
with this little trick we have now .../8 to operate with, and our transformed fraction has still the same value
-6/1 = -48/8 indeed.
so, we have
x + -25/8 = -48/8
x - 25/8 = -48/8
x = -48/8 + 25/8 = -23/8