30/5= 6
6 - 2 = 4
Your number is four
Answer:
Step-by-step explanation:
![a_{1} = 8\\a_{9} = 360 = a_{1} \cdot r^9 = 8 \cdot r^9\\r = \sqrt[9]{\frac{360}{9} } \cong 1.53](https://tex.z-dn.net/?f=a_%7B1%7D%20%3D%208%5C%5Ca_%7B9%7D%20%3D%20360%20%3D%20a_%7B1%7D%20%5Ccdot%20r%5E9%20%3D%208%20%5Ccdot%20r%5E9%5C%5Cr%20%3D%20%5Csqrt%5B9%5D%7B%5Cfrac%7B360%7D%7B9%7D%20%7D%20%20%5Ccong%201.53)
By the formula of a geometric series:

Answer:
D.3.5
Step-by-step explanation:
4x+2y=10(given)
2x+y=5
y=5-2x-----(1)
y=2x-1------(2)(given)
Since the left side of the equations are the the same,
5-2x=2x-1
4x=6
x=1.5
Sub x=1.5 into eq(1),
y = 5-2(1.5) = 5-3 = 2
so, x+y = 1.5+2 = 3.5
<h3>Answer:</h3>
x/tan(x) is an even function
sec(x)/x is an odd function
<h3>Explanation:</h3>
<em>x/tan(x)</em>
For f(x) = x/tan(x), consider f(-x).
... f(-x) = -x/tan(-x)
Now, we know that tan(x) is an odd function, so tan(-x) = -tan(x). Using this, we have ...
... f(-x) = -x/(-tan(x)) = x/tan(x) = f(x)
The relation f(-x) = f(x) is characteristic of an even function, one that is symmetrical about the y-axis.
_____
<em>sec(x)/x</em>
For g(x) = sec(x)/x, consider g(-x).
... g(-x) = sec(-x)/(-x)
Now, we know that sec(x) is an even function, so sec(-x) = sec(x). Using this, we have ...
... g(-x) = sec(x)/(-x) = -sec(x)/x = -g(x)
The relation g(-x) = -g(x) is characeristic of an odd function, one that is symmetrical about the origin.