What is the upper quartile, Q3, of the following data set? 54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41
scZoUnD [109]
The original data set is
{<span>54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41}
Sort the data values from smallest to largest to get
</span><span>{38, 41, 43, 46, 48, 52, 53, 54, 55, 56, 60, 62, 65, 67, 70}
</span>
Now find the middle most value. This is the value in the 8th slot. The first 7 values are below the median. The 8th value is the median itself. The next 7 values are above the median.
The value in the 8th slot is 54, so this is the median
Divide the sorted data set into two lists. I'll call them L and U
L = {<span>38, 41, 43, 46, 48, 52, 53}
U = {</span><span>55, 56, 60, 62, 65, 67, 70}
they each have 7 items. The list L is the lower half of the sorted data and U is the upper half. The split happens at the original median (54).
Q3 will be equal to the median of the list U
The median of U = </span>{<span>55, 56, 60, 62, 65, 67, 70} is 62 since it's the middle most value.
Therefore, Q3 = 62
Answer: 62</span>
The surface area of the triangular prism is 1664 square inches.
Explanation:
Given that the triangular prism has a length of 20 inches and has a triangular face with a base of 24 inches and a height of 16 inches.
The other two sides of the triangle are 20 inches each.
We need to determine the surface area of the triangular prism.
The surface area of the triangular prism can be determined using the formula,

where b is the base, h is the height, p is the perimeter and l is the length
From the given the measurements of b, h, p and l are given by
,
,
and

Hence, substituting these values in the above formula, we get,

Simplifying the terms, we get,

Adding the terms, we have,

Thus, the surface area of the triangular prism is 1664 square inches.
Answer:
2x
Step-by-step explanation:
parallel lines are two lines that won't meet. the lines need to have the same slopes or else the will meet
Answer:
Well......
Step-by-step explanation:
Well if you subtract 2x from 7x, you get 5x. If you subtract 5x from 10x, you get 5x. When you Do that to both formulas, you end up with the same formula: 5x=-6.