Answer:
a. The percentage of vehicles who pass through this construction zone who are exceeding the posted speed limit =90.82%
b. Percentage of vehicles travel through this construction zone with speeds between 50 mph and 55 mph= 2.28%
Step-by-step explanation:
We have to find
a) P(X>40)= 1- P(x=40)
Using the z statistic
Here
x= 40 mph
u= 44mph
σ= 3 mph
z=(40-44)/3=-1.33
From the z-table -1.67 = 0.9082
a) P(X>40)=
Probability exceeding the speed limit = 0.9082 = 90.82%
b) P(50<X<55)
Now
z1 = (50-44)/3 = 2
z2 = (55-44)/3= 3.67
Area for z>3.59 is almost equal to 1
From the z- table we get
P(55 < X < 60) = P((50-44)/3 < z < (55-44)/3)
= P(2 < z < 3.67)
= P(z<3.67) - P(z<2)
= 1 - 0.9772
= 0.0228
or 2.28%
D. 1/5
Reason: it’s always the first number in the equation
85/95 is equal to 0.8947
64/76 is equal to 0.842
Therefore, 85/95 is greater
<h3><u>Given</u><u>:</u><u>-</u></h3>
- Perimeter of parallelogram = 66 ft
<h3><u>To</u><u> </u><u>find</u><u> </u><u>out</u><u>:</u><u>-</u></h3>
Find the longest side of a parallelogram.
<h3><u>Formula</u><u> </u><u>used</u><u>:</u><u>-</u></h3>
Perimeter of parallelogram = 2 ( a + b )
<h3>
<u>Solution:-</u><u> </u></h3>
We know that,
Perimeter of parallelogram = 2 ( a + b )
★ Substituting the values in the above formula,we get:
⇒ 66 = 2 ( 3x + 1 + 2x - 3 )
⇒ 66 = 2 ( 5x - 2 )
⇒ 66/2 = 5x - 2
⇒ 33 = 5x - 2
⇒ 5x - 2 = 33
⇒ 5x = 33 + 2
⇒ 5x = 35
⇒ x = 35/5
⇒ x = 7 ft
Now,
One side,a = 3x + 1
★ Putting the value of x
⇒ 3 × 7 + 1
⇒ 21 + 1
⇒ 22 ft
Other side,b = 2x - 3
★ Putting the value of x
⇒ 2 × 7 - 3
⇒ 14 - 3
⇒ 11 ft
Hence,the longest Side of given parallelogram is 22 ft ( 3x + 1 ) .