I. Let t be the line tangent at point J. We know that a tangent line at a point on a circle, is perpendicular to the diameter comprising that certain point.
So t is perpendicular to JL
let l be the tangent line through L. Then l is perpendicular to JL
ii. So t and l are 2 different lines, both perpendicular to line JL.
2 lines perpendicular to a third line, are parallel to each other, so the tangents t and l are parallel to each other.
Remark. Draw a picture to check the steps
Answer:
15.05
Step-by-step explanation:
Also, you don't need to add the zeros, they don't mean anything.
Look at the picture.
The triangle ADC and the triangle CDB are similar.
Therefore corresponding sides are all in the same proportion:

Answer: 4√3
Answer:
............................................................................................................................................................................
......................................................................................
............................................................................................................................................................................
......................................................................................
............................................................................................................................................................................
......................................................................................
............................................................................................................................................................................
......................................................................................