Answer:
After this treatment, the investigators should expect to get a mixture of the desired enzyme, plus fragments of the peptide used to desorb the enzyme in question.
This would be the result of using a peptide as a desorption solution when the desired protein is a protease,
Assuming that the protease retains its activity in the medium in question, and that the peptide can act as a substrate (which would make sense), as the peptide solution is added, it will interact with and bind to the antibody, but some molecules will also interact with the active site of the enzyme as it desorbs and passes through, culminating on the elution of the hydrolized part of the peptide along with the enzyme.
Access to treatment and diagnosis in poorer countries is an ongoing issue,
likely that it'll be a full-blown disease. <span />
Lthough much of the explanation for why certain substances mix and form
solutions and why others do not is beyond the scope of this class, we
can get a glimpse at why solutions form by taking a look at the
process by which ethanol, C2H5OH, dissolves in
water. Ethanol is actually miscible in water, which means that the two
liquids can be mixed in any proportion without any limit to their
solubility. Much of what we now know about the tendency of particles
to become more dispersed can be used to understand this kind of change
as well.
Picture a layer of ethanol being carefully added to the top of some water (Figure below).
Because the particles of a liquid are moving constantly, some of the
ethanol particles at the boundary between the two liquids will
immediately move into the water, and some of the water molecules will
move into the ethanol. In this process, water-water and
ethanol-ethanol attractions are broken and ethanol-water attractions
are formed. Because both the ethanol and the water are molecular
substances with O−H bonds, the attractions broken between water
molecules and the attractions broken between ethanol molecules are
hydrogen bonds. The attractions that form between the ethanol and
water molecules are also hydrogen bonds (Figure below). There you go
I think D because the whole thing is gaseous and it has two atmospheric layers