Sa=452.39 452.39=4πr² -12.56 on both sides (12.56 is pi times 4) √439.83=√r² 20.97 FOR VOLUME v=4/3πr³ 4*π20.97³÷3 38626.37
hopes that helps
9514 1404 393
Answer:
Step-by-step explanation:
Consecutive interior angles are supplementary.
(x -20)° +(4x +15)° = 180°
5x = 185 . . . . . . . . . . . . . . divide by °, add 5
x = 37 . . . . . . . . . . . . divide by 5
__
74° +(5y -4)° = 180°
5y = 110 . . . . . . . . . . . divide by °, subtract 70
y = 22 . . . . . . . . . . divide by 5
Q-2r=4, therefore: q=4+2r.
Plug the value of q into q+r=37, so you get:
4+2r+r=37
3r=37-4=33
3r=33
Therefore: r=11.
q-2r=4, but r=11, so:
q-2(11)=4
q-22=4
Therefore q=26.
Check if the answer is correct using second equation:
q=4+2r=4+2(11)=4+22=26.
So: q=26 and r=11.
Answer:
1. 
2. 
![23. [tex]Assuming t as independent variable:F(r,t)=t+\frac{1}{m} exp(m+r)+\frac{r^{2} }{2} =C\\Step-by-step explanation:1. Separable variables:[tex]\frac{dy}{dt}=\frac{y*cos(t) }{t}\\ \frac{dy}{y}= \frac{cos(t) }{t}dt\\ \int {\frac{dy }{y}} \, dt=\int {\frac{cos(t) }{t}} \, dt \\ln(y)-ln(C)=ln(t)-\frac{t^{2} }{2(2!)} +\frac{t^{4} }{4(4!)} -\frac{t^{6} }{6(6!)}+... \\y=C(t*exp(\frac{t^{2} }{2(2!)} +\frac{t^{4} }{4(4!)} -\frac{t^{6} }{6(6!)}+...))](https://tex.z-dn.net/?f=2%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E3.%20%5Btex%5DAssuming%20t%20as%20independent%20variable%3A%3C%2Fp%3E%3Cp%3EF%28r%2Ct%29%3Dt%2B%5Cfrac%7B1%7D%7Bm%7D%20exp%28m%2Br%29%2B%5Cfrac%7Br%5E%7B2%7D%20%7D%7B2%7D%20%3DC%5C%5C%3C%2Fp%3E%3Cp%3E%3Cstrong%3EStep-by-step%20explanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3E1.%20Separable%20variables%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3E%5Btex%5D%5Cfrac%7Bdy%7D%7Bdt%7D%3D%5Cfrac%7By%2Acos%28t%29%20%7D%7Bt%7D%5C%5C%20%20%5Cfrac%7Bdy%7D%7By%7D%3D%20%5Cfrac%7Bcos%28t%29%20%7D%7Bt%7Ddt%5C%5C%20%5Cint%20%7B%5Cfrac%7Bdy%20%7D%7By%7D%7D%20%5C%2C%20dt%3D%5Cint%20%7B%5Cfrac%7Bcos%28t%29%20%7D%7Bt%7D%7D%20%5C%2C%20dt%20%5C%5Cln%28y%29-ln%28C%29%3Dln%28t%29-%5Cfrac%7Bt%5E%7B2%7D%20%7D%7B2%282%21%29%7D%20%2B%5Cfrac%7Bt%5E%7B4%7D%20%7D%7B4%284%21%29%7D%20-%5Cfrac%7Bt%5E%7B6%7D%20%7D%7B6%286%21%29%7D%2B...%20%5C%5Cy%3DC%28t%2Aexp%28%5Cfrac%7Bt%5E%7B2%7D%20%7D%7B2%282%21%29%7D%20%2B%5Cfrac%7Bt%5E%7B4%7D%20%7D%7B4%284%21%29%7D%20-%5Cfrac%7Bt%5E%7B6%7D%20%7D%7B6%286%21%29%7D%2B...%29%29)
2. Separable variables
\frac{dy}{sin(y)}=dt\\ \int\ \frac{1}{sin(y)}} \, dy = \int\ 1} \, dt\\t+C=ln(csc(y)-cot(y))[/tex]
3. Homogeneous D.E
Rewriting:
