Answer:
2 and 2
Step-by-step explanation:
Parallel sides of rectangles are congruent, and because the other side of both rectangles is 2, the sides of the triangle are 2 because they share the side with the rectangle.

Above, I changed the fraction form of x and y into exponential form so it is easier to see the differentiation. Now, we can differentiate:

Now that we have dy/dx, we can plug in the x, which is 4, and the y, which is 4/19. We know these values of x and y because your question stated y(4) = 4/19.
The answer is D.
We know that a rectangle has two widths that are equal and two lengths that are equal. One width is 22, so the other one is also 22.
If you wanted to find the lengths, you would add both widths together (same as multiplying a width by two) and add that to the two lengths equaled to the perimeter.
So, 22 * 2 + 2x = perimeter of rectangle. We added all four sides together.
We know that the perimeter is at least 165, so 22 * 2 + 2x = 165. Here's the twist. They want the most minimum possible length. So, what answer choice gives you 165 or less for the most minimum or smallest length while still getting to 165?
That is D.
22 * 2 + 2x < = 165.
Hope this helped!
Answer: 
<u>Step-by-step explanation:</u>
Convert everything to "sin" and "cos" and then cancel out the common factors.
![\dfrac{cot(x)+csc(x)}{sin(x)+tan(x)}\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg(\dfrac{sin(x)}{1}+\dfrac{sin(x)}{cos(x)}\bigg)\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg[\dfrac{sin(x)}{1}\bigg(\dfrac{cos(x)}{cos(x)}\bigg)+\dfrac{sin(x)}{cos(x)}\bigg]\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg(\dfrac{sin(x)cos(x)}{cos(x)}+\dfrac{sin(x)}{cos(x)}\bigg)](https://tex.z-dn.net/?f=%5Cdfrac%7Bcot%28x%29%2Bcsc%28x%29%7D%7Bsin%28x%29%2Btan%28x%29%7D%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%28%5Cdfrac%7Bsin%28x%29%7D%7B1%7D%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%5B%5Cdfrac%7Bsin%28x%29%7D%7B1%7D%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%5D%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%28%5Cdfrac%7Bsin%28x%29cos%28x%29%7D%7Bcos%28x%29%7D%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29)

