This pattern of question is always coming up. Since we can't easily guess, then let us set up simultaneous equation for the statements.
let the two numbers be x and y.
Multiply to 44. x*y = 44 ..........(a)
Add up to 12. x + y = 12 .........(b)
From (b)
y = 12 - x .......(c)
Substitute (c) into (a)
x*y = 44
x*(12 - x) = 44
12x - x² = 44
-x² + 12x = 44
-x² + 12x - 44 = 0.
Multiply both sides by -1
-1(-x² + 12x - 44) = -1*0
x² - 12x + 44 = 0.
This does not look factorizable, so let us just use quadratic formula
comparing to ax² + bx + c = 0, x² - 12x + 44 = 0, a = 1, b = -12, c = 44
x = (-b + √(b² - 4ac)) /2a or (-b - √(b² - 4ac)) /2a
x = (-(-12) + √((-12)² - 4*1*44) )/ (2*1)
x = (12 + √(144 - 176) )/ 2
x = (12 + √-32 )/ 2
√-32 = √(-1 *32) = √-1 * √32 = i * √(16 *2) = i*√16 *√2 = i*4*√2 = 4i√2
Where i is a complex number. Note the equation has two values. We shall include the second, that has negative sign before the square root.
x = (12 + √-32 )/ 2 or (12 - √-32 )/ 2
x = (12 + 4i√2 )/ 2 (12 - 4i√2 )/ 2
x = 12/2 + (4i√2)/2 12/2 - (4i√2)/2
x = 6 + 2i√2 or 6 - 2i√2
Recall equation (c):
y = 12 - x, When x = 6 + 2i√2, y = 12 - (6 + 2i√2) = 12 - 6 - 2i√2 = 6 - 2i√2
When x = 6 - 2i√2, y = 12 - (6 - 2i√2) = 12 - 6 + 2i√2 = 6 + 2i√2
x = 6 + 2i√2, y = 6 - 2i√2
x = 6 - 2i√2, y = 6 + 2i√2
Therefore the two numbers that multiply to 44 and add up to 12 are:
6 + 2i√2 and 6 - 2i√2
Answer:
5
Step-by-step explanation:
The area of any quadrilateral can be determined by multiplying the length of its base by its height. Since we know the shape here is square, we know that all sides are of equal length. From this we can work backwards by taking the square root of the area to find the length of one side.
we have

see the attached figure to better understand the problem
we know that
The perimeter of the triangle is equal to

and
the area of the triangle is equal to

in this problem

we know that
The distance between two points is equal to

Step 
<u>Find the distance AB</u>

Substitute the values in the formula



Step 
<u>Find the distance BC</u>

Substitute the values in the formula



Step 
<u>Find the distance AC</u>

Substitute the values in the formula



Step 
<u>Find the distance DC</u>

Substitute the values in the formula



Step 
<u>Find the perimeter of the triangle</u>

substitute the values


therefore
The perimeter of the triangle is equal to 
Step 
<u>Find the area of the triangle</u>

in this problem

substitute the values


therefore
the area of the triangle is 
37.88888888 and it just keep repearing so there is no right answer dont foeget to mark me as the best answer