Answer:
1.) 48
2.) 65
3.) 36
Step-by-step explanation:
1.) If the equation is 6(x-4) and x = 12, then all we have to do is plug in the value of x. When we plug in, all we do is substitute 12 for x because they mentioned in the question that x = 12. So, we end up getting 6(12 - 4). After solving this, we get 48.
2.) This problem is a lot like the last problem. All we need to do is substitute /plug in the values of x and y into the equation, to get 4(4^2) - 35/7 - (8 + 14). After solving, we get 65.
3.) . This problem, once again, is also a lot like the last problems. We need to substitute the value of x into the equation 8x+12. Since we know from the problem that x is 3, all we have to do is 8 * 3 + 12.
Answer:
12
Step-by-step explanation:
side 1: 4
side 2: 6
6*4*(1/2)
12
Answer:
The correct option is;
False
Step-by-step explanation:
The coefficient of x^k·y^(n-k) is nk, False
The kth coefficient of the binomial expansion, (x + y)ⁿ is 
Where;
k = r - 1
r = The term in the series
For an example the expansion of (x + y)⁵, we have;
(x + y)⁵ = x⁵ + 5·x⁴·y + 10·x³·y² + 10·x²·y³ + 5·x·y⁴ + y⁵
The third term, (k = 3) coefficient is 10 while n×k = 3×5 = 15
Therefore, the coefficient of x^k·y^(n-k) for the expansion (x + y)ⁿ =
not nk