Answer:
Yes, we can assume that the percent of female athletes graduating from the University of Colorado is less than 67%.
Step-by-step explanation:
We need to find p-value first:
z statistic = (p⁻ - p0) / √[p0 x (1 - p0) / n]
p⁻ = X / n = 21 / 38 = 0.5526316
the alternate hypothesis states that p-value must be under the normal curve, i.e. the percent of female athletes graduating remains at 67%
H1: p < 0.67
z = (0.5526316 - 0.67) / √[0.67 x (1 - 0.67) / 38] = -0.1173684 / 0.076278575
z = -1.538681
using a p-value calculator for z = -1.538681, confidence level of 5%
p-value = .062024, not significant
Since p-value is not significant, we must reject the alternate hypothesis and retain the null hypothesis.
Answer:
Volume of a cup
The shape of the cup is a cylinder. The volume of a cylinder is:
\text{Volume of a cylinder}=\pi \times (radius)^2\times heightVolume of a cylinder=π×(radius)
2
×height
The diameter fo the cup is half the diameter: 2in/2 = 1in.
Substitute radius = 1 in, and height = 4 in in the formula for the volume of a cylinder:
\text{Volume of the cup}=\pi \times (1in)^2\times 4in\approx 12.57in^3Volume of the cup=π×(1in)
2
×4in≈12.57in
3
2. Volume of the sink:
The volume of the sink is 1072in³ (note the units is in³ and not in).
3. Divide the volume of the sink by the volume of the cup.
This gives the number of cups that contain a volume equal to the volume of the sink:
\dfrac{1072in^3}{12.57in^3}=85.3cups\approx 85cups
12.57in
3
Step-by-step explanation:
Answer:
166 packs
Step-by-step explanation:
Data obtained from the question include:
Total pack of paper needed by Bret 450 packs
Bret currently has = 284 packs
The remaining packs of paper needed by Bret = 450 — 284 = 166 packs
The answer is B, 5+7=12. You can also just subtract 5 from 12 and that’ll also give you the answer