Answer:
____________________________
0 1 2 (3) 4 5 6 7 8 9 10
Answer:
The probability that a randomly chosen tree is greater than 140 inches is 0.0228.
Step-by-step explanation:
Given : Cherry trees in a certain orchard have heights that are normally distributed with
inches and
inches.
To find : What is the probability that a randomly chosen tree is greater than 140 inches?
Solution :
Mean -
inches
Standard deviation -
inches
The z-score formula is given by, 
Now,





The Z-score value we get is from the Z-table,


Therefore, the probability that a randomly chosen tree is greater than 140 inches is 0.0228.
Answer:
Step-by-step explanation:
Let the other side of the rectangle be y. The perimeter of the rectangle is expressed as P = 2(x+y)
Given P = 30ft, on substituting P = 30 into the expression;
30 = 2(x+y)
x+y = 15
y = 15-x
Also since the area of the rectangle is xy;
A = xy
Substitute y = 15-x into the area;
A = x(15-x)
A = 15x-x²
The function that models its area A in terms of the length x of one of its sides is A = 15x-x²
The side of length x yields the greatest area when dA/dx = 0
dA/dx = 15-2x
15-2x = 0
-2x = -15
x = -15/-2
x = 7.5 ft
Hence the side length, x that yields the greatest area is 7.5ft.
Since y = 15-x
y = 15-7.5
y = 7.5
Area of the rectangle = 7.5*7.5
Area of the rectangle = 56.25ft²
Answer:
A. 5.19 units
Step-by-step explanation:

Given:
= 81°- Arc length = 7.34 units
Substituting given values into the equation and solving for r:






Step-by-step explanation:
-2x - 6xy - 3y + 7x <em>combine like terms</em>
= (-2x + 7x) - 6xy - 3y
= 5x - 6xy - 3y