28
(have to write more so I'm writing this)
Answer/Step-by-step explanation:
1. ∠XVR = 180 - <XVW (angle on a straight line)
∠XVR = 180 - 55°
∠XVR = 125°
2. ∠RVS = <XVW (Vertical angles are congruent)
∠RVS = 55°
3. ∠WVS = ∠XVR (vertical angles are congruent)
∠WVS = 125°
4. ∠RST = <R + <RVS (exterior angle theorem)
<RST = 55 + 55
<RST = 110°
5. ∠RSV = 180 - (<R + <RVS) (sum of triangle)
∠RSV = 180 - (55 + 55)
∠RSV = 70°
6. ∠VSU = <RST (vertical angles are congruent)
<VSU = 70°
7. ∠UST = <RSV (vertical angles)
<UST = 70°
8. ∠TUS = 180 - (<UST + <T) (sum of triangle)
<TUS = 180 - (70 + 71)
<TUS = 39°
Answer:
See solution below
Step-by-step explanation:
According to the diagram shown
m<1 = m<5 = 5=65 degrees (corresponding angle)
m<5 = m<4 - 65 degrees (alternate interior angle)
m<9 = m<8 = 65degrees (corresponding angle)
m<5 = m<8 = 65dgrees (vertically opposite angles)
m<6+m<8 = 180
m<6 + 65 = 180
m<6 = 180 - 65
m<6 = 115degrees
m<2 = m<6 = 115degrees (corresponding angles)
m<6 = m<7 = 115degrees (vertically opposite angles)
m<3 = m<7 = 115degrees(corresponding angle)
)
First, we need to transform the equation into its standard form (x - h)²=4p(y - k).
Using completing the square method:
y = -14x² - 2x - 2
y = -14(x² + 2x/14) - 2
y = -14(x² + 2x/14 + (2/28)²) -2 + (2/28)²
y = -14(x + 1/14)² - 391/196
-1/14(y + 391/196) = (x + 1/14)²
This is a vertical parabola and its focus <span>(h, k + p) is (-1/14, -391/196 + 1/56) = (-1/14, -775/392).
Or (-0.071,-1.977).</span>