Members of this set would include {2, 3, 4, 5, ... }
Answer:
$153
Step-by-step explanation:
You would multiply 90 and 0.70 to get 63. Then you add that to the original price, 90, and get 153.
B (t) = 50 (1.4) ^ t
What is the y-intercept of the function?
The intersection with the y-axis of the function you find when x = 0.
In this case we have:
For t = 0:
B (0) = 50 (1.4) ^ 0
B (0) = 50 * (1)
B (0) = 50
Answer:
the y-intercept of the function is:
B (0) = 50
What does this mean in the context of the problem?
You must place the complete statement to answer exactly.
However, in any problem of exponential type, it means the initial quantity of something.
If we refer to the increase in population over time, then the intersection with the y-axis is the initial population.
Answer:
22
Step-by-step explanation:
16+6=22 hope this helps
well, the assumption is that is a rectangle, namely it has two equal pairs, so we can just find the length of one of the pairs to get the dimensions.
hmmmm let's say let's get the length of the segment at (-1,-3), (1,3) for its length
and
the length of the segment at (-1, -3), (-4, -2) for its width
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{length}{L}=\sqrt{[1-(-1)]^2+[3-(-3)]^2}\implies L=\sqrt{(1+1)^2+(3+3)^2} \\\\\\ L=\sqrt{4+36}\implies L=\sqrt{40} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Blength%7D%7BL%7D%3D%5Csqrt%7B%5B1-%28-1%29%5D%5E2%2B%5B3-%28-3%29%5D%5E2%7D%5Cimplies%20L%3D%5Csqrt%7B%281%2B1%29%5E2%2B%283%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20L%3D%5Csqrt%7B4%2B36%7D%5Cimplies%20L%3D%5Csqrt%7B40%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{width}{w}=\sqrt{[-4-(-1)]^2+[-2-(-3)]^2}\implies w=\sqrt{(-4+1)^2+(-2+3)^2} \\\\\\ w=\sqrt{9+1}\implies w=\sqrt{10} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{A=Lw}\implies \sqrt{40}\cdot \sqrt{10}\implies \sqrt{400}\implies \boxed{20}](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-4%7D~%2C~%5Cstackrel%7By_2%7D%7B-2%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bwidth%7D%7Bw%7D%3D%5Csqrt%7B%5B-4-%28-1%29%5D%5E2%2B%5B-2-%28-3%29%5D%5E2%7D%5Cimplies%20w%3D%5Csqrt%7B%28-4%2B1%29%5E2%2B%28-2%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20w%3D%5Csqrt%7B9%2B1%7D%5Cimplies%20w%3D%5Csqrt%7B10%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7BA%3DLw%7D%5Cimplies%20%5Csqrt%7B40%7D%5Ccdot%20%5Csqrt%7B10%7D%5Cimplies%20%5Csqrt%7B400%7D%5Cimplies%20%5Cboxed%7B20%7D)