Answer:
I hope it will help you :)
Answer:
“1.5”
Step-by-step explanation:
Answer:
<h3>Graph 3</h3>
Line starting at x = -2
- <u>Domain</u>: x ≥ -2
- <u>Range</u>: y ≥ 0
<h3>Graph 4</h3>
Vertical line
- <u>Domain</u>: x = 3
- <u>Range</u>: y = any real number
<h3>Graph 5</h3>
Quadratic function with negative leading coefficient and max value of 3
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≤ 3
<h3>Graph 6</h3>
Curve with non-negative domain and min value of -2
- <u>Domain</u>: x ≥ 0
- <u>Range</u>: y ≥ -2
<h3>Graph 7</h3>
Line with no restriction
- <u>Domain</u>: x = any real number
- <u>Range</u>: y = any real number
<h3>Graph 8</h3>
Quadratic function with positive leading coefficient and min value of 4
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≥ 4
<h3>Graph 9</h3>
Parabola with restriction at x = -4
- <u>Domain</u>: x = any real number except -4
- <u>Range</u>: y = any real number
<h3>Graph 10</h3>
Square root function with star point (2, 0)
- <u>Domain</u>: x ≥ 2
- <u>Range</u>: y ≥ 0
Answer:
There is a probability of 76% of not selling the package if there are actually three dead batteries in the package.
Step-by-step explanation:
With a 10-units package of batteries with 3 dead batteries, the sampling can be modeled as a binomial random variable with:
- n=4 (the amount of batteries picked for the sample).
- p=3/10=0.3 (the proportion of dead batteries).
- k≥1 (the amount of dead batteries in the sample needed to not sell the package).
The probability of having k dead batteries in the sample is:

Then, the probability of having one or more dead batteries in the sample (k≥1) is:
