Let width = w
Let length = l
Let area = A
3w+2l=1200
2l=1200-3w
l=1200-3/2
A=w*l
A=w*(1200-3w)/2
A=600w-(3/2)*w^2
If I set A=0 to find the roots, the maximum will be at wmax=-b/2a which is exactly 1/2 way between the roots-(3/2)*w^2+600w=0
-b=-600
2a=-3
-b/2a=-600/-3
-600/-3=200
w=200
And, since 3w+2l=1200
3*200+2l=1200
2l = 600
l = 300
The dimensions of the largest enclosure willbe when width = 200 ft and length = 300 ft
check answer:
3w+2l=1200
3*200+2*300=1200
600+600=1200
1200=1200
and A=w*l
A=200*300
A=60000 ft2
To see if this is max area change w and l slightly but still make 3w+2l=1200 true, like
w=200.1
l=299.85
A=299.85*200.1
A=59999.985
Answer:
66/125
Step-by-step explanation:
Divide top ad bottom by 8. The resulting fraction cannot be simplified further.
Answer:
B) -125a^11
Step-by-step explanation:
(-5a^2)^3·a^5 = (-5)^3·a^6·a^5
= (-5)^3·a^(2·3)·a^5
= (-5)^3·a^6·a^5
= -125·a^(6+5)
= -125·a^11 . . . . matches choice B
_____
The applicable rules of exponents are ...
(a^b)(a^c) = a^(b+c)
(a^b)^c = a^(bc)
Answer:
f(x) = - 4x² + 24x - 20
Step-by-step explanation:
Given
f(x) = - 4(x - 3)² + 16 ← expand the factor using FOIL
= - 4(x² - 6x + 9) + 16 ← distribute parenthesis by - 4
= - 4x² + 24x - 36 + 16 ← collect like terms
= - 4x² + 24x - 20