1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
3 years ago
8

20points!!!!! Help pls HURRY!!!!

Mathematics
1 answer:
Lisa [10]3 years ago
4 0

Answer:

yes yes  no

Step-by-step explanation:

You might be interested in
It takes a hose 5 minutes to fill a rectangular aquarium 11 inches long, 13 inches wide, and 14 inches tall. how long will it ta
Karolina [17]
Volume of 1st aquarium = 11 * 13 * 14 = 2002
volume of 2nd aquarium = 21 * 14 * 30 = 8820

if 5 minutes = 2002
1 minute = 2002\5 = 400.4

minutes to fill the 2nd aquarium is 8820/400.4 = 22.028(approximately)

7 0
3 years ago
Read 2 more answers
A community theater uses the function p (d) = (-4d+40) (d−40) to model the profit (in dollars) expected in a weekend when the ti
fomenos

The theater make the maximum profit at d = $25. Then the maximum profit of the theatre is $ 900.

<h3>What is differentiation?</h3>

The rate of change of a function with respect to the variable is called differentiation. It may be increasing or decreasing.

A community theater uses the function P(d) = (− 4d + 40) (d − 40) to model the profit (in dollars) expected on a weekend when the tickets to a comedy show are priced at d dollars each.

Then the maximum profit of the theatre will be

The function is P(d) = (− 4d + 40) (d − 40)

Differentiate the function with respect to d and put it equal to zero for maximum or minimum profit.

\begin{aligned} \dfrac{\mathrm{d} }{\mathrm{d} d}P(d) &= 0\\\\\dfrac{\mathrm{d} }{\mathrm{d} d}(- 4d + 40) (d - 40) &= 0\\\\(-4d+40) -4 (d-40) &= 0\\\\-8d + 200 &= 0\\\\d &= 25 \end{aligned}

Then the checking for maximum or minimum, again differentiate, we have

\begin{aligned} \dfrac{\mathrm{d} }{\mathrm{d} d}P(d) &= \dfrac{\mathrm{d} }{\mathrm{d} d}(- 4d + 40) (d - 40) \\\\\dfrac{\mathrm{d} }{\mathrm{d} d}P(d) &= \dfrac{\mathrm{d} }{\mathrm{d} d}(-8d + 200) \\\\\dfrac{\mathrm{d} }{\mathrm{d} d}P(d) &= -8\\\\ \dfrac{\mathrm{d} }{\mathrm{d} d}P(d) & < 0\end{aligned}

The value is less than zero hence maximum value will occur at d = 25.

Then maximum profit will be

P(d) = (− 4×25 + 40) (25 − 40)

P(d) = (− 100 + 40) (−15)

P(d) = (− 60) (− 15)

P(d) = $ 900

More about the differentiation link is given below.

brainly.com/question/24062595

#SPJ1

7 0
2 years ago
Determine the horizontal vertical and slant asymptote y=x^2+2x-3/x-7
lilavasa [31]

Answer:

<h2>A.Vertical:x=7</h2><h2>Slant:y=x+9</h2>

Step-by-step explanation:

f(x)=\dfrac{x^2+2x-3}{x-7}\\\\vertical\ asymptote:\\\\x-7=0\qquad\text{add 7 to both sides}\\\\\boxed{x=7}\\\\horizontal\ asymptote:\\\\\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3}{x-7}=\lim\limits_{x\to\pm\infty}\dfrac{x^2\left(1+\frac{2}{x}-\frac{3}{x^2}\right)}{x\left(1-\frac{7}{x}\right)}=\lim\limits_{x\to\pm\infty}\dfrac{x\left(1+\frac{2}{x}-\frac{3}{x^2}\right)}{1-\frac{7}{x}}=\pm\infty\\\\\boxed{not\ exist}

slant\ asymptote:\\\\y=ax+b\\\\a=\lim\limits_{x\to\pm\infty}\dfrac{f(x)}{x}\\\\b=\lim\limits_{x\to\pm\infty}(f(x)-ax)\\\\a=\lim\limits_{x\to\pm\infty}\dfrac{\frac{x^2+2x-3}{x-7}}{x}=\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3}{x(x-7)}=\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3}{x^2-7x}\\\\=\lim\limits_{x\to\pm\infty}\dfrac{x^2\left(1+\frac{2}{x}-\frac{3}{x^2}\right)}{x^2\left(1-\frac{7}{x}\right)}=\lim\limits_{x\to\pm\infty}\dfrac{1+\frac{2}{x}-\frac{3}{x^2}}{1-\frac{7}{x}}=\dfrac{1}{1}=1

b=\lim\limits_{x\to\pm\infty}\left(\dfrac{x^2+2x-3}{x-7}-1x\right)=\lim\limits_{x\to\pm\infty}\left(\dfrac{x^2+2x-3}{x-7}-\dfrac{x(x-7)}{x-7}\right)\\\\=\lim\limits_{x\to\pm\infty}\left(\dfrac{x^2+2x-3}{x-7}-\dfrac{x^2-7x}{x-7}\right)=\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3-(x^2-7x)}{x-7}\\\\=\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3-x^2+7x}{x-7}=\lim\limits_{x\to\pm\infty}\dfrac{9x-3}{x-7}=\lim\limits_{x\to\pm\infty}\dfrac{x\left(9-\frac{3}{x}\right)}{x\left(1-\frac{7}{x}\right)}

=\lim\limits_{x\to\pm\infty}\dfrac{9-\frac{3}{x}}{1-\frac{7}{x}}=\dfrac{9}{1}=9\\\\\boxed{y=1x+9}

8 0
4 years ago
PLEASE HELP THESE ARE MULTI STEP EQUATIONS!!!!!!!!!
dusya [7]

Answer:

1.-3

2.4

3.3

4. -4

5. -4

6.3

7. -19/9

8. -3

9.0

10. -2

Step-by-step explanation:

7 0
3 years ago
Which unit rate is the lowest price per ounce? Choice A: 15 ounces of chocolate chips for $2.49 Choice B: 20 ounces of chocolate
Arisa [49]
Its 15 divided by 2.49 which is 6.02, then you have to divide 20 divide by 3.32 which equals 6.02. They are both equal Both a and B are equal

You're Welcome i hope i helped
7 0
3 years ago
Read 2 more answers
Other questions:
  • A student says that if 5x2 = 20, then x must be equal to 2. Do you agree or disagree with the student? Justify your answer.
    9·2 answers
  • For each long-distance call anywhere in the continental United States, a new phone service will charge users $0.60 per minute fo
    13·1 answer
  • Which choices are equations for the coordinates (-2,4) (1,-2)?
    6·1 answer
  • Classify each of the following number
    5·1 answer
  • These angles are complementary. What is X?
    7·2 answers
  • HELP ASAP JUST the answer please
    12·1 answer
  • How many solutions does the equation 2(9x-6)=18x+2 have??? Please help
    9·1 answer
  • Ill give brainliest if correct
    9·2 answers
  • Pre-Algebra <br> Due urgently <br> Tysm
    11·2 answers
  • What is the answer, I need this for a geometry assignment.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!