Answer:
(B) They may have binding sites for regulatory molecules that are separate from active sites.
(C) They generally have more than one subunit.
(E) They interconvert between a more active form and a less active form.
Explanation:
Allosteric enzymes are the regulatory enzymes that have a specific site for binding of modulator or effector molecule. The activity of these enzymes is altered by the noncovalent binding of modulators at the allosteric site. The binding of the modulator brings about a conformational change in the allosteric enzymes.
The relatively inactive conformation of these enzymes is called T state while the active conformation is the R state. Most of the allosteric enzymes have multiple subunits and deviate from Michaelis–Menten kinetics and exhibit a sigmoid saturation curve of V0 vs. [S].
Answer:
B
Explanation
They have to realease things somehow
Answer:
transform
Explanation:
Most earthquakes occur at the boundaries where the plates meet. In fact, the locations of earthquakes and the kinds of ruptures they produce help scientists define the plate boundaries. There are three types of plate boundaries: spreading zones, transform faults, and subduction zones.
Answer:
The answer is 50
Explanation:
Hemophilia is a X-linked disease. That means the recesive allele which causes the disease is not in Y chromosome, but only in X chromosome. If we denote:
X⁺ : dominant allele
X⁻: recesive allele
Then, in a woman there are three posibilities:
X⁺X⁻: is a carrier woman (without hemophilia)
X⁺X⁺: healthy woman
X⁻X⁻: woman with hemophilia
But in a man there are two posibilities:
X⁺Y: healthy man
X⁻Y: man with hemophilia
A man with hemophilia is X⁻Y, and a healthy woman whose mother had hemophilia is a carrier woman (X⁺X⁻). If they have a child, there are 4 posibilities, and each one has 1/4 of occurrence probability:
X⁻Y x X⁺X⁻ = X⁻X⁺, X⁻X⁻, X⁺Y, YX⁻
Posibilities with hemophilia are X⁻X⁻ and YX⁻ (1/4 + 1/4= 1/2= 0.5= 50%)
In each filial, there is a 50 percent of probability of having a child (man or woman) with hemophilia.