Step-by-step explanation:
Let the height above which the ball is released be H
This problem can be tackled using geometric progression.
The nth term of a Geometric progression is given by the above, where n is the term index, a is the first term and the sum for such a progression up to the Nth term is
To find the total distance travel one has to sum over up to n=3. But there is little subtle point here. For the first bounce ( n=1 ), the ball has only travel H and not 2H. For subsequent bounces ( n=2,3,4,5...... ), the distance travel is 2×(3/4)n×H
a=2H..........r=3/4
However we have to subtract H because up to the first bounce, the ball only travel H instead of 2H
Therefore the total distance travel up to the Nth bounce is
For N=3 one obtains
D=3.625H
The answer to this is .5 or 1/2.
If Deliah does jumping jacks at a constant rate, this means that she does them at the same pace or you could say that she does the same amount of jumping jacks in a specified amount of time, ie. if you counted how many jumping jacks she did in one minute, it would be same as how many she would complete in the next minute, and the next, and so on.
Now given that she does 184 jumping jacks in four minutes, and she has kept a constant pace throughout, to find out how many she does each minute, we simply need to divide the number of jumping jacks she does in 4 minutes by 4. Thus:
Jumping jacks in 1 minute = Jumping jacks in 4 minutes / 4
= 184 / 4
= 46
Thus, Deliah can do 46 jumping jacks per minute.
Yes because 84+45 is 129 and 3(28+15) is 129