1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
3 years ago
11

Please solve the following sum or difference identity.

Mathematics
2 answers:
xxTIMURxx [149]3 years ago
6 0

Answer:

sin(A - B) = \frac{4}{5}

Step-by-step explanation:

Given:

sin(A) = \frac{24}{25}

sin(B) = -\frac{4}{5}

Need:

sin(A - B)

First, let's look at the identities:

sum: sin(A + B) = sinAcosB + cosAsinB

difference: sin(A - B) = sinAcosB - cosAsinB

The question asks to find sin(A - B); therefore, we need to use the difference identity.

Based on the given information (value and quadrant), we can draw reference triangles to find the simplified values of A and B.

sin(A) = \frac{24}{25}

cos(A) = \frac{7}{25}

sin(B) = -\frac{4}{5}

cos(B) = \frac{3}{5}

Plug these values into the difference identity formula.

sin(A - B) = sinAcosB - cosAsinB

sin(A - B) = (\frac{24}{25})(\frac{3}{5}) - (-\frac{4}{5})(\frac{7}{25})

Multiply.

sin(A - B) = (\frac{72}{125}) + (\frac{28}{125})

Add.

sin(A - B) = \frac{4}{5}

This is your answer.

Hope this helps!

muminat3 years ago
5 0

GIVEN:

sinA = 24/25

sinB = - 4/5

IDENTITIES:

  • sin(A + B) = sinAcosB + cosAsinB
  • sin(A - B) = sinAcosB - cosAsinB

ANSWER:

We have find the unknown trigo ratio by constructing a given right angled triangle using trigonometric function.

  • cosA = 7/25 & cosB = 3/5

We know the identity of difference, so we have to just plug the respective value.

sin(A - B) = sinAcosB - cosAsinB

  • (24/25 × 3/5) - (7/25 × - 4/5)
  • 72/125 - (- 28/125)
  • 72/125 + 28/125
  • 100/125 = 4/5.

Hence, sin(A - B) = 4/5.

You might be interested in
HELP ASAP 100 POINTS!!!
nikklg [1K]
<h3>Answer:  choice 4. f(x) and g(x) have a common x-intercept</h3>

===========================================================

Explanation:

For me, it helps to graph everything on the same xy coordinate system. Start with the given graph and plot the points shown in the table. You'll get what you see in the diagram below.

The blue point C in that diagram is on the red parabola. This point is the x intercept as this is where both graphs cross the x axis. Therefore, they have a common x intercept.

------------

Side notes:

  • Choice 1 is not true due to choice 4 being true. We have f(x) = g(x) when x = 2, which is why f(x) > g(x) is not true for all x.
  • Choice 2 is not true. Point B is not on the parabola.
  • Choice 3 is not true. There is only one known intersection point between f(x) and g(x), and that is at the x intercept mentioned above. Of course there may be more intersections, but we don't have enough info to determine this.

7 0
3 years ago
Read 2 more answers
Match the fraction/decimal with the percentage<br><br> MARKING BRIANIEST!
const2013 [10]

Yoink:

hey imma yoink your points  and not answer the question ok?

Jk:

jk, number 1 is b

number 2 is a

number 3 is d

and number 4 is c

7 0
2 years ago
PLEASE HELP ME ON THIS AND SHOW UR WORK<br> THX
swat32
When an exponential function is given as 
f(x)=ab^x, and
knowing that b^0=1, that means that
f(0)=ab^0=a  value of function when x=0, or the initial value.
In the case of
f(x)=20.b^x, f(0)=20.b^0 = 20  (initial value)

If b=1.2, then the hourly growth rate is (1.2-1)=0.2=20%.
If b=1.85, then the hourly growth rate is (1.85-1)=0.85=85%. 
4 0
3 years ago
A bread recipe calls for 10 cups of flour. If a bowl already has 4 cups of flour, how many more cups need to be added to the bow
shusha [124]

Answer:

6 more cups

Step-by-step explanation:

6 0
2 years ago
(x+2/x-7) - (x^2+4x+13/x^2-4x-21)
olya-2409 [2.1K]

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

7 0
3 years ago
Read 2 more answers
Other questions:
  • Select the correct answer.
    8·1 answer
  • Two friends share 3 fruit bars equally how much does each friend get
    7·2 answers
  • Which of the following graphs shows the graph of this equation <br> Y+1=2 (x-1)
    11·2 answers
  • What is 1.465 times 10 to the 2nd power? in scientific notation
    7·2 answers
  • A store buys a baseball cap for $5 and sells it for $20. what is the profit
    11·1 answer
  • Is 38 − –40 positive or negative?
    12·2 answers
  • How do you solve -3(m+4)-2m&gt;18
    15·1 answer
  • Solve the system of linear equations using any method.<br> -6y + 2 = -4x <br> y – 2 = x
    10·1 answer
  • 4 divided by 0.2 Please answer first one answers gets marked brainiest + 20 points!
    8·2 answers
  • Which number is greater than 555,621,000? A. 5.0 x 10 B. 6.2 x 10 C. 5.55621 x 10 D. 9.99 x 10
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!