The quotient is 2x^2-5x+2
Answer:
below
Step-by-step explanation:
1) 1/4 1/4 1/4 4/4
___|___________|___________|____________|
2) 0 1/8 1/8 1/8 1/8 1/8 1/8 1/8 8/8
|______|______|______|______|______|______|______|______|
Answer:
Step-by-step explanation:
Answer:
Consider the given equation.
4sinxsin2xsin4x=sin3x
2(2sin2xsinx)sin4x=sin3x
We know that
2sinAsinB=cos(A−B)−cos(A+B)
Therefore,
2[cos(2x−x)−cos(2x+x)]sin4x=sin3x
2[cosx−cos3x]sin4x=sin3x
2sin4xcosx−2sin4xcos3x=sin3x
We know that
2sinAcosB=sin(A+B)+sin(A−B)
Therefore,
sin(4x+x)+sin(4x−x)−[sin(4x+3x)+sin(4x−3x)]=sin3x
sin(5x)+sin(3x)−[sin(7x)+sin(x)]=sin3x
sin(5x)−sin(7x)=sin(x)
We know that
sinC−sinD=2cos(
2
C+D
)sin(
2
C−D
)
Therefore,
2cos(
2
5x+7x
)sin(
2
5x−7x
)=sinx
2cos(
2
12x
)sin(
2
−2x
)=sinx
2cos(6x)sin(−x)=sinx
−2cos(6x)sin(x)=sinx
cos6x=−
2
1
6x=2nπ±
3
2π
x=
3
nπ
±
9
π
Hence, the value is
3
nπ
±
9
π
.
Answer:
A non-calculus solution follows afterward.
For a calculus solution, the gradient is the first derivative with the point put in.
y = -x²+3x
dy/dx or y’ = -2x +3 is the gradient at any point.
but the tangent is at x = 2 so put it in
y’ = -(2*2)+3 = -1 is the gradient of the tangent at point (2,2)
Non-calculus solution:
y = -x²+3x 1️⃣but slope of tangent m = (y-2)/(x-2)2️⃣
put 1️⃣ into 2️⃣ and rearrange ⟹ mx-2m+x²-3x+2 = 0
or x²+(m-3)x+2–2m =0
but for a tangent the discriminant b²-ac = 0
(m-3)²-4*1*(2–2m) = 0
m²+2m+1 = 0
(m+1)(m+1) = 0
m = -1 is the is the gradient of the tangent at point (2,2)
Step-by-step explanation: