1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blsea [12.9K]
3 years ago
15

Uma secretária possui 6 camisas, 4 saias, e 3 pares de sapatos. Qual o número de maneiras distintas com que a secretária poderá

se arrumar usando uma camisa uma saia e um par de sapatos?
Mathematics
1 answer:
juin [17]3 years ago
6 0

Answer:

72 maneiras

Step-by-step explanation:

O que acontecerá aqui é que um de cada tipo de roupa será selecionado.

Das 6 camisas, 1 será selecionada O número de maneiras pelas quais podemos fazer isso é 6C1 = 6

Das saias também, ela estará selecionando uma O número de maneiras que isso pode ser feito é 4C1 = 4

O terceiro é selecionar um par de sapatos de 3 e isso seria 3C1 = 3

assim o número de maneiras pelas quais ela pode fazer as seleções é 6 * 4 * 3 = 72 maneiras

You might be interested in
What is the equivalent fraction for 3,2,6,4 whole number?
maw [93]
3/1, 2/, 6/, 4/1, hope I helped!
8 0
3 years ago
What is the formula for finding the area of a circle?
Alika [10]
The formula to find<span> a </span>circle's area<span> (radius)</span>2<span> usually expressed as π ⋅ r 2 where r is the radius of a </span>circle<span>. </span>Area<span> of </span>Circle<span> Concept. The </span>area of a circle<span> is all the space inside a </span>circle's<span> circumference.</span>
4 0
3 years ago
Read 2 more answers
If S_1=1,S_2=8 and S_n=S_n-1+2S_n-2 whenever n≥2. Show that S_n=3⋅2n−1+2(−1)n for all n≥1.
Snezhnost [94]

You can try to show this by induction:

• According to the given closed form, we have S_1=3\times2^{1-1}+2(-1)^1=3-2=1, which agrees with the initial value <em>S</em>₁ = 1.

• Assume the closed form is correct for all <em>n</em> up to <em>n</em> = <em>k</em>. In particular, we assume

S_{k-1}=3\times2^{(k-1)-1}+2(-1)^{k-1}=3\times2^{k-2}+2(-1)^{k-1}

and

S_k=3\times2^{k-1}+2(-1)^k

We want to then use this assumption to show the closed form is correct for <em>n</em> = <em>k</em> + 1, or

S_{k+1}=3\times2^{(k+1)-1}+2(-1)^{k+1}=3\times2^k+2(-1)^{k+1}

From the given recurrence, we know

S_{k+1}=S_k+2S_{k-1}

so that

S_{k+1}=3\times2^{k-1}+2(-1)^k + 2\left(3\times2^{k-2}+2(-1)^{k-1}\right)

S_{k+1}=3\times2^{k-1}+2(-1)^k + 3\times2^{k-1}+4(-1)^{k-1}

S_{k+1}=2\times3\times2^{k-1}+(-1)^k\left(2+4(-1)^{-1}\right)

S_{k+1}=3\times2^k-2(-1)^k

S_{k+1}=3\times2^k+2(-1)(-1)^k

\boxed{S_{k+1}=3\times2^k+2(-1)^{k+1}}

which is what we needed. QED

6 0
3 years ago
Fill in the blanks □+0=3/4.also mention the property used.
Dafna1 [17]

Answer:

3/4 + 0 = 3/4 Additive Neutral Property

Step-by-step explanation:

3 0
3 years ago
A contradiction has no solutions. True or False?
Eddi Din [679]

Answer:

false

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • What is the absolute value I need help please help me complete this problem
    5·1 answer
  • Simplify the radical expression. EXPLAIN ALL YOUR STEPS. <br><br> sqrroot 363-3sqrroot 27
    15·1 answer
  • 1) 4x - 3y=3<br>x+3y= 12​
    9·2 answers
  • Find the value of x when 6 - 3x = 5x - 10x + 10.
    9·2 answers
  • HELP ME I NEED TO TURN IT IN SOON! /Which of the following statements are true? Select all that apply.
    11·2 answers
  • What is the formula to find the volume in a rectangular ​
    5·1 answer
  • You spin the spinner once. What is P(less than 3 or prime)?<br><br> •3/5<br> •2/5<br> •1<br> •3/4
    13·1 answer
  • The sum of 3 consecutive numbers is 126. Find the numbers.
    14·2 answers
  • What is the scale factor from Figure A to Figure B?
    6·2 answers
  • 56. How many tangent lines to the curve <img src="https://tex.z-dn.net/?f=y%3Dx%20%2F%28x%2B1%29" id="TexFormula1" title="y=x /(
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!