Answer:
a) P(X<50)=0.9827
b) P(X>47)=0.4321
c) P(-1.5<z<1.5)=0.8664
Step-by-step explanation:
We will calculate the probability based on a random sample of one moped out of the population, normally distributed with mean 46.7 and standard deviation 1.75.
a) This means we have to calculate P(x<50).
We will calculate the z-score and then calculate the probability accordign to the standard normal distribution:

b) We have to calculatee P(x>47).
We will calculate the z-score and then calculate the probability accordign to the standard normal distribution:

c) If the value differs 1.5 standard deviations from the mean value, we have a z-score of z=1.5

So the probability that maximum speed differs from the mean value by at most 1.5 standard deviations is P(-1.5<z<1.5):

Use the elimination process
Usually when you do expressions involving subtraction you can do Keep, Change ,Change
That means you keep the sign of the first number and change the other two signs.
It is best you rewrite the expression to addition because a lot of people don't do well with subtracting .
Answer:
Type I: 1.9%, Type II: 1.6%
Step-by-step explanation:
given null hypothesis
H0=the individual has not taken steroids.
type 1 error-falsely rejecting the null hypothesis
⇒ actually the null hypothesis is true⇒the individual has not taken steroids.
but we rejected it ⇒our prediction is the individual has taken steroids.
typr II error- not rejecting null hypothesis when it has to be rejected
⇒actually null hypothesis is false ⇒the individual has taken steroids.
but we didnt reject⇒the individual has not taken steroids.
let us denote
the individual has taken steroids by 1
the individual has not taken steroids.by 0
predicted
1 0
actual 1 98.4% 1.6%
0 1.9% 98.1%
so for type 1 error
actual-0
predicted-1
therefore from above table we can see that probability of Type I error is 1.9%=0.019
so for type II error
actual-1
predicted-0
therefore from above table we can see that probability of Type I error is 1.6%=0.016