Answer:
B
Step-by-step explanation:
substitute
6+4=10
12-3=9
4-9=-5
Answer:
(5,2,2)
Step-by-step explanation:
-3x+4y+2z = -3
2x-4y-z=0
y = 3x-13
Multiply the second equation by 2
2*(2x-4y-z)=0*2
4x -8y -2z =0
Add this to the first equation to eliminate z
-3x+4y+2z = -3
4x -8y -2z =0
-------------------------
x -4y = -3
Take the third equation and substitute it in for y
x - 4(3x-13) = -3
Distribute the 4
x - 12x +52 = -3
Combine like terms
-11x +52 = -3
Subtract 52 from each side
-11x +52-52 = -3-52
-11x = -55
Divide by -11
-11x/-11 = -55/-11
x=5
Now we can solve for y
y =3x-13
y =3*5 -13
y = 15-13
y=2
Now we need to find z
2x-4y-z=0
2(5) -4(2) -z=0
10-8 -z=0
2-z=0
Add z to each side
2-z+z= 0+z
2=z
x=5, y=2, z=2
(5,2,2)
Converse (switch p and q)
If an angle is obtuse, then it measures 128°
This is false (a 127° angle is obtuse, but it does not measure 128°)
_____________________________________________________________
Inverse (negations of p and q)
If an angle does not measure 128°, then it is not obtuse
This is false (a 127° angle does not measure 128°, but it is obtuse)
_____________________________________________________________
Contrapositive (negations of p and q, then switch their places)
If an angle is not obtuse, it does not measure 128°
This is true (any 128° is obtuse; no exceptions)
Answer:

Step-by-step explanation:
![\sf 2x + 4(7-x) \\\\Resolving \ Parenthesis\\\\2x + 28-4x \\\\Combining\ like\ terms\\\\2x-4x +28\\\\-2x + 28\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%202x%20%2B%204%287-x%29%20%20%5C%5C%5C%5CResolving%20%5C%20Parenthesis%5C%5C%5C%5C2x%20%2B%2028-4x%20%5C%5C%5C%5CCombining%5C%20like%5C%20terms%5C%5C%5C%5C2x-4x%20%2B28%5C%5C%5C%5C-2x%20%2B%2028%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
![\sf \\12x-(4+2x)\\\\12x-4-2x\\\\Combining \ like \ terms\\\\12x-2x - 4\\\\10x-4 \\\\\rule[22]{225}{2} \\2(10-x)+3(12-x) \\\\Resolving \ Parenthesis\\\\20-2x + 36 -3x\\\\Combining \ like \ terms\\\\20+36 -2x-3x\\\\56 - 5x \\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%20%5C%5C12x-%284%2B2x%29%5C%5C%5C%5C12x-4-2x%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C12x-2x%20-%204%5C%5C%5C%5C10x-4%20%5C%5C%5C%5C%5Crule%5B22%5D%7B225%7D%7B2%7D%20%5C%5C2%2810-x%29%2B3%2812-x%29%20%5C%5C%5C%5CResolving%20%5C%20Parenthesis%5C%5C%5C%5C20-2x%20%2B%2036%20-3x%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C20%2B36%20-2x-3x%5C%5C%5C%5C56%20-%205x%20%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
![\sf 7(x-1)-6(x+1)\\\\Resolving \ Parethesis\\\\7x-7-6x-6\\\\Combining \ like \ terms\\\\7x-6x-7-6\\\\x - 13\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%207%28x-1%29-6%28x%2B1%29%5C%5C%5C%5CResolving%20%5C%20Parethesis%5C%5C%5C%5C7x-7-6x-6%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C7x-6x-7-6%5C%5C%5C%5Cx%20-%2013%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
~AnonymousHelper1807