9514 1404 393
Answer:
1. the longer frame (B) has the shorter width
2. the shorter width is 6 3/7 inches, area divided by length
Step-by-step explanation:
The relation between area, length, and width is ...
A = LW
Then the width is ...
W = A/L . . . . . inversely proportional to length
__
1. Since length and width are inversely proportional (when area is constant), the shorter width will be associated with the longer length. Frame B will have the shorter width.
__
2. The width of frame B is ...
W = A/L = (45 in²)/(7 in) = 45/7 in = 6 3/7 in
Answer:
43.35 years
Step-by-step explanation:
From the above question, we are to find Time t for compound interest
The formula is given as :
t = ln(A/P) / n[ln(1 + r/n)]
A = $2500
P = Principal = $200
R = 6%
n = Compounding frequency = 1
First, convert R as a percent to r as a decimal
r = R/100
r = 6/100
r = 0.06 per year,
Then, solve the equation for t
t = ln(A/P) / n[ln(1 + r/n)]
t = ln(2,500.00/200.00) / ( 1 × [ln(1 + 0.06/1)] )
t = ln(2,500.00/200.00) / ( 1 × [ln(1 + 0.06)] )
t = 43.346 years
Approximately = 43.35 years
Answer: The process of combining matrices, vectors, or other quantities under specific rules to obtain their product.
Answer:
the correct answer is 19
Step-by-step explanation:
I just took the quiz
Answer:
To solve the first inequality, you need to subtract 6 from both sides of the inequality, to obtain 4n≤12. This can then be cancelled down to n≤3 by dividing both sides by 4. To solve the second inequality, we first need to eliminate the fraction by multiplying both sides of the inequality by the denominator, obtaining 5n>n^2+4. Since this inequality involves a quadratic expression, we need to convert it into the form of an^2+bn+c<0 before attempting to solve it. In this case, we subtract 5n from both sides of the inequality to obtain n^2-5n+4<0. The next step is to factorise this inequality. To factorise we must find two numbers that can be added to obtain -5 and that can be multiplied to obtain 4. Quick mental mathematics will tell you that these two numbers are -4 and -1 (for inequalities that are more difficult to factorise mentally, you can just use the quadratic equation that can be found in your data booklet) so we can write the inequality as (n-4)(n-1)<0. For inequalities where the co-efficient of n^2 is positive and the the inequality is <0, the range of n must be between the two values of n whereby the factorised expresion equals zero, which are n=1 and n=4. Therefore, the solution is 1<n<4 and we can check this by substituting in n=3, which satisfies the inequality since (3-4)(3-1)=-2<0. Since n is an integer, the expressions n≤3 and n<4 are the same. Therefore, we can write the final answer as either 1<n<4, or n>1 and n≤3.