Answer:
- As the slopes of both lines 'm' and 'n' are the same.
Therefore, we conclude that the equation x-2y=4 represents the equation of the line 'n' if lines m and n are parallel to each other.
Step-by-step explanation:
We know that the slope-intercept of line equation is

Where m is the slope and b is the y-intercept
Given the equation of the line m
y = 1/2x - 4
comparing with the slope-intercept form of the line equation
y = mx + b
Therefore,
The slope of line 'm' will be = 1/2
We know that parallel lines have the 'same slopes, thus the slope of the line 'n' must be also the same i.e. 1/2
Checking the equation of the line 'n'

solving for y to writing the equation in the slope-intercept form and determining the slope

Add -x to both sides.


Divide both sides by -2


comparing ith the slope-intercept form of the line equation
Thus, the slope of the line 'n' will be: 1/2
- As the slopes of both lines 'm' and 'n' are the same.
Therefore, we conclude that the equation x-2y=4 represents the equation of the line 'n' if lines m and n are parallel to each other.
N² - 49 = 0
<u> + 49 + 49</u>
n² = 49
n = <u>+</u>7
The solution to the problem is {7, -7}.
1/3 with a line over the answer ( 0.66666666666...)
Answer:

Step-by-step explanation:
Given :
Two points are given in graph (-6, -4) and {7, 5).
The point-slope form of the equation of a straight line is:
------------(1)
Let
and 
The slope of the line 
Put all known value in above equation.



The slope of the line 
We know m, and also know that
, so we put these value in equation 1.

Therefore, the equation of the line is
.