1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
3 years ago
10

At what point does she lose contact with the snowball and fly off at a tangent? That is

Mathematics
1 answer:
postnew [5]3 years ago
4 0

Answer:

α ≥ 48.2°

Step-by-step explanation:

The complete question is given as follows:

" A skier starts at the top of a very large frictionless snowball, with a very small initial speed, and skis straight  down the side. At what point does she lose contact with the snowball and fly off at a tangent? That is, at the  instant she loses contact with the snowball, what angle α does a radial line from the center of the snowball to  the skier make with the vertical?"

- The figure is also attached.

Solution:

- The skier has a mass (m) and the snowball’s radius (r).

- Choose the center of the snowball to be the zero of gravitational  potential. - We can look at the velocity (v) as a function of the angle (α) and find the specific α at which the skier lifts off and  departs from the snowball.

- If we ignore snow-­ski friction along with air resistance, then the one work producing force in this problem, gravity,  is conservative. Therefore the skier’s total mechanical energy at any angle α is the same as her total mechanical  energy at the top of the snowball.

- Hence, From conservation of energy we have:

                       KE (α) + PE(α) = KE(α = 0) + PE(α = 0)

                       0.2*m*v(α)^2 + m*g*r*cos(α) = 0.5*m*[ v(α = 0)]^2 + m*g*r

                       0.2*m*v(α)^2 + m*g*r*cos(α) ≈ m*g*r

                        m*v(α)^2 / r = 2*m*g( 1 - cos(α) )

- The centripetal force (due to gravity) will be mgcosα, so the skier will remain on the snowball as long as gravity  can hold her to that path, i.e. as long as:

                         m*g*cos(α) ≥ 2*m*g( 1 - cos(α) )

- Any radial gravitational force beyond what is necessary for the circular motion will be balanced by the normal  force—or else the skier will sink into the snowball.

- The expression for α_lift becomes:

                            3*cos(α) ≥ 2

                            α ≥ arc cos ( 2/3) ≥ 48.2°

You might be interested in
Los siguientes problemas se encuentran en lenguaje común, traduzcan cada uno de ellos a lenguaje algebraico solamente. AEel cuad
dsp73

Answer:

A) La traducción algebraica de la oración es x^{2}-5=220.

B) La traducción algebraica de la oración es 4\cdot x^{2} = 100.

C) Ese problema se traduce bajo esta forma lógica como w\cdot l = 5625\,m^{2} \land w = l \implies w = 75\,m \land l = 75\,m.

Step-by-step explanation:

Debemos proceder en este ejercicio como sigue:

1) <em>Leer cuidadosamente la frase.</em>

2) <em>Escribir su equivalente matemático a medida que se lee y hasta culminarlo.</em>

A continuación, presentamos el desarrollo y la conclusión de cada ejercicio:

A) Interpretamos la oración paso a paso conforme al lenguaje matemático conocido:

(i) <em>El cuadrado de un número</em>:

x^{2}

(ii) <em>El cuadrado de un número menos cinco</em>:

x^{2}-5

(iii) <em>El cuadrado de un número menos cinco es igual a</em>:

x^{2}-5=

(iv) <em>El cuadrado de un número menos cinco es igual a doscientos veinte</em>:

x^{2}-5=220

La traducción algebraica de la oración es x^{2}-5=220.

B) Interpretamos la oración paso a paso conforme al lenguaje matemático conocido:

(i) <em>Alejandra pensó un número</em>:

x

(ii) <em>Alejandra pensó un número, lo elevó al cuadrado,</em>:

x^{2}

(iii) <em>Alejandra pensó un número, lo elevó al cuadrado, multiplicó el resultado por cuatro</em>:

4\cdot x^{2}

(iv) <em>Alejandra pensó un número, lo elevó al cuadrado, multiplicó el resultado por cuatro y obtuvo cien</em>:

4\cdot x^{2} = 100

La traducción algebraica de la oración es 4\cdot x^{2} = 100.

C) Interpretamos la oración paso a paso conforme al lenguaje matemático conocido:

(i) <em>Si una pista de baile tiene un área de 5625 m²</em>:

A = 5625\,m^{2}

(ii) <em>Si una pista de baile tiene un área de 5625 m² y se sabe que su ancho mide lo mismo que su ancho</em>:

Lo que se infiere de la afirmación es que la pista de baile sería un cuadrilátero y más precisamente, un cuadrado:

A = 5625\,m^{2}

A = w\cdot l (l - Largo, w - Ancho)

w = l

Entonces la ecuación algebraica sería:

l^{2} = 5625\,m^{2}

(iii) Si una pista de baile tiene un área de 5625 m² y se sabe que su ancho mide lo mismo que su ancho, cuanto medirán las dimensiones de la pista de baile:

Lo que se infiere de la afirmación es que la pista de baile sería un cuadrilátero y más precisamente, un cuadrado:

A = 5625\,m^{2}

A = w\cdot l (l - Largo, w - Ancho)

w = l

Entonces la ecuación algebraica sería:

l^{2} = 5625\,m^{2}

Y obtenemos la longitud por despeje:

l = \sqrt{5625\,m^{2}}

l = 75\,m

w = 75\,m

Ese problema se traduce bajo esta forma lógica como w\cdot l = 5625\,m^{2} \land w = l \implies w = 75\,m \land l = 75\,m.

4 0
3 years ago
The equipment operates 5 days a week for 12 hours each day according to last weeks production numbers shown in the table how man
Pani-rosa [81]

Answer:

cawnser is 60

Step-by-step explanation:

because 5 times 12 is 60 hours

8 0
3 years ago
4 divided by 457 is what
antiseptic1488 [7]
The answer to your question will be 114.25
4 0
3 years ago
Read 2 more answers
What's the formula for finding the surface area of a prism and the formula for the surface area of a triangular prism??
Llana [10]
The surface area<span> of any </span>prism<span> is the total </span>area<span> of all its sides and faces. A </span>triangular prism<span> has three rectangular sides and two </span>triangular<span> faces. </span>To find<span> the </span>area<span> of the rectangular sides, use the </span>formula A = lw, where A = area, l = length, and h = height.

The formula  <span>A=<span>1/2 </span>bh</span><span> </span>
4 0
3 years ago
Read 2 more answers
What is the distance between (4,7) and (2, 2)?​
Art [367]
I’m pretty sure the distance would be (2,5)
5 0
3 years ago
Read 2 more answers
Other questions:
  • There are 36 slices of pizza that will be divided between 7 people. How many slices does each person get if they are split evenl
    11·2 answers
  • Plz help me with this question!!!
    12·1 answer
  • Megan has 30 brownies and 42 cupcakes to package. She wants to put the same numbers of brownies and cupcakes in each box. What i
    13·1 answer
  • 91. jerry bought some pears at the store. he paid $4.59 for 5.4 pounds of pears. what is the unit price of the pears? homework h
    13·1 answer
  • Katie has a roll of ribbon that s 8 feet long. She cuts off 3 feet of ribbon and the remaining length is cut into 8 shorter piec
    12·1 answer
  • A package of dental floss contains 25 m of floss. How many yards of floss are in the package? If a dental hygienist uses about 1
    5·1 answer
  • The graph of an equation is shown below. Which of the following points is a solution to the equation?
    11·2 answers
  • A set of input and output values, such that each input has exactly one output is called a____
    9·2 answers
  • Faces, edges and corners of star<br> pls fast <br><br><br><br> thankyou
    15·1 answer
  • PLSSS HELP IF YOU TURLY KNOW THISS
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!