1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
6

Lol answer these besties

Mathematics
1 answer:
maks197457 [2]3 years ago
7 0
1234567891011121314151617181920
You might be interested in
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Which elements in the same below are integers? -3,3.7,9,-7.34,2.83,5,56/7,-1
Bogdan [553]

Answer:

Integers -3, 9, 5, 56/7, -1

Step-by-step explanation:

Integers are whole numbers that can be positive or negative. They do not have decimals.

4 0
3 years ago
The lines graphed below are perpendicular. The slope of the redline is -2. What is the slope of the green line
attashe74 [19]

Answer:

It would be undefined if the line is vertical.

Step-by-step explanation:

6 0
3 years ago
if both expressions have the same value after substituting two different values and simplifying, then they are . When p = 2, the
Radda [10]
2p=16 and second expression is 8p=40
3 0
3 years ago
Read 2 more answers
I need to find the absolute mean of this?
Slav-nsk [51]
Give more detail please this makes zero sense
4 0
3 years ago
Other questions:
  • Round 0.4283 to the nearest thousandth
    12·1 answer
  • What numbers can I multiply to get a product of 0.4?
    10·2 answers
  • Hailey spent $12 to buy 2 fish. Her cousin spent double the amount on fish. Each fish cost the same amount. How many fish do Hai
    12·2 answers
  • Alexandra wishes to surround his rectangular flower bed with a gravel walk 1 meter wide flower bed is 5m and the width is 4m. Wh
    13·1 answer
  • 5x^2 - 9 - 7x^2 - x + 1
    9·1 answer
  • Solve and show steps F(-5)=-2x+1 / 3
    15·1 answer
  • Please explain how you would graph this line using the slope-intercept method. <br> y = -3/2x + 175
    9·1 answer
  • PLEASE HELP THIS HOMEWORK IS DUE TODAY!
    11·2 answers
  • Caroline takes a taxi to the train station. The driver charges a $4.45 initial fee and then $1.05 per mile. Which equation can b
    11·1 answer
  • What is 10,274 - 100,000
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!