If g(x) = 3^Vx-123, find g( - 2).
1 answer:
Answer:
g(-2) = -5
Step-by-step explanation:
We are given the following function:
![g(x) = \sqrt[3]{x - 123}](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%5Csqrt%5B3%5D%7Bx%20-%20123%7D)
Find g( - 2).
This means that we find g when
. So
![g(-2) = \sqrt[3]{-2 - 123} = \sqrt[3]{-125} = \sqrt[3]{-5^3} = -5](https://tex.z-dn.net/?f=g%28-2%29%20%3D%20%5Csqrt%5B3%5D%7B-2%20-%20123%7D%20%3D%20%5Csqrt%5B3%5D%7B-125%7D%20%3D%20%5Csqrt%5B3%5D%7B-5%5E3%7D%20%3D%20-5)
So
g(-2) = -5
You might be interested in
Answer:
x < 8
Step-by-step explanation:
9x + 3 > 10x - 5
9x - 10x > -5 - 3
-x > -8
x < 8
Step-by-step explanation:




Add 509 and 12:
509
+ 12
____
521
509 + 12 = 521
Answer:
A
Step-by-step explanation:
Just took the quiz