Answer:
$30
Step-by-step explanation:
Multiply $7.50 by 4 (Him and his friends) and you get a sum of $30
Each of them have 2.50 left
Answer:
The domain is x ≥ -7
Step-by-step explanation:
The domain asks what values can x take
We know that the sqrt(x+7) must be ≥ 0
That means the smallest value it can be is zero
x+7 ≥ 0
x ≥ -7
The domain is x ≥ -7
Answer: 0.0035
Step-by-step explanation:
Given : The readings on thermometers are normally distributed with a mean of 0 degrees C and a standard deviation of 1.00 degrees C.
i.e.
and
Let x denotes the readings on thermometers.
Then, the probability that a randomly selected thermometer reads greater than 2.17 will be :_
![P(X>2.7)=1-P(\xleq2.7)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{2.7-0}{1})\\\\=1-P(z\leq2.7)\ \ [\because\ z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.9965\ \ [\text{By z-table}]\ \\\\=0.0035](https://tex.z-dn.net/?f=P%28X%3E2.7%29%3D1-P%28%5Cxleq2.7%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B2.7-0%7D%7B1%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq2.7%29%5C%20%5C%20%5B%5Cbecause%5C%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.9965%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%20%5C%5C%5C%5C%3D0.0035)
Hence, the probability that a randomly selected thermometer reads greater than 2.17 = 0.0035
The required region is attached below .
The factors of a polynomial function are the zeros of the function
It is true that x - 3 is a factor of m(x) = x^3 - x^2 - 5x - 3
<h3>How to show why the x - 3 is a factor</h3>
The function is given as:
m(x) = x^3 - x^2 - 5x - 3
The factor is given as:
x - 3
Set the factor to 0
x - 3 = 0
Solve for x
x = 3
Substitute 3 for x in the function
m(3) = 3^3 - 3^2 - 5(3) - 3
Evaluate
m(3) =0
Since the value of m(3) is 0, then x - 3 is a factor of m(x) = x^3 - x^2 - 5x - 3
Read more about factors at:
brainly.com/question/11579257
Answer:
0.888...
Step-by-step explanation:
It depends on how many decimal places you want, or write it as a repeating decimal like I did above. Rounded answers like below would also be correct if you were asked to round it to the nearest tenth, hundredth, thousandth, etc...
0.9
0.89
0.889
0.8889
.
.
.