6(7 + 5) + 3 =
6(12) + 3 =
72 + 3 = 75
Step-by-step explanation:
You have studied polynomials consisting of constants and/or variables combined by addition or subtraction. The variables may include exponents. The examples so far have been limited to expressions such as 5x4 + 3x3 – 6x2 + 2x containing one variable, but polynomials can also contain multiple variables. An example of a polynomial with two variables is 4x2y – 2xy2 + x – 7.
Many formulas are polynomials with more than one variable, such as the formula for the surface area of a rectangular prism: 2ab + 2bc + 2ac, where a, b, and c are the lengths of the three sides. By substituting in the values of the lengths, you can determine the value of the surface area. By applying the same principles for polynomials with one variable, you can evaluate or combine like terms in polynomials with more than one variable
Answer:
the right answer is x+1
Step-by-step explanation:
1/2x+1
therefore :
2×1/2x+1
x+1
《《 mr. Web boi 》》
product = 200$
hours = 50$
so that means that u buy it, that's -200$ and if he goofs around for hours, that's -50$ for each hour that passes by
answer should be D :)
Hope this helped youu
We will use the right Riemann sum. We can break this integral in two parts.

We take the interval and we divide it n times:

The area of the i-th rectangle in the right Riemann sum is:

For the first part of our integral we have:

For the second part we have:

We can now put it all together:
![\sum_{i=1}^{i=n} [(\Delta x)^4 i^3-6(\Delta x)^2i]\\\sum_{i=1}^{i=n}[ (\frac{3}{n})^4 i^3-6(\frac{3}{n})^2i]\\ \sum_{i=1}^{i=n}(\frac{3}{n})^2i[(\frac{3}{n})^2 i^2-6]](https://tex.z-dn.net/?f=%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%20%5B%28%5CDelta%20x%29%5E4%20i%5E3-6%28%5CDelta%20x%29%5E2i%5D%5C%5C%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%5B%20%28%5Cfrac%7B3%7D%7Bn%7D%29%5E4%20i%5E3-6%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2i%5D%5C%5C%0A%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2i%5B%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2%20i%5E2-6%5D)
We can also write n-th partial sum: