Answer: y = (x + 5)² + 8
<u>Step-by-step explanation:</u>
y = x²
left 5 units: y = (x + 5)²
up 8 units: y = (x + 5)² + 8
Answer: The proof is mentioned below.
Step-by-step explanation:
Here, Δ ABC is isosceles triangle.
Therefore, AB = BC
Prove: Δ ABO ≅ Δ ACO
In Δ ABO and Δ ACO,
∠ BAO ≅ ∠ CAO ( AO bisects ∠ BAC )
∠ AOB ≅ ∠ AOC ( AO is perpendicular to BC )
BO ≅ OC ( O is the mid point of BC)
Thus, By ASA postulate of congruence,
Δ ABO ≅ Δ ACO
Therefore, By CPCTC,
∠B ≅ ∠ C
Where ∠ B and ∠ C are the base angles of Δ ABC.
[Given]
{ x + y = 6
{ x = y + 4
[Plug-in our x value & solve]
[Given] x + y = 6
[ Plug-in] (y + 4) + y = 6
[Distribute] y + 4 + y = 6
[Combine like terms] 2y + 4 = 6
[Subtract 4 from both sides] 2y = 2
[Divide both sides by 2] y = 1
[Answer]
Third option - (5, 1)
-> You do not need to solve for x since this is the only option that has y = 1, but to solve for x we would do y + 4 = 1 + 4 = 5, so this answer fully checks correctly
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
★ Also please leave the rating you think I deserve (It helps other users as well as myself)
- Heather
Answer:
4
Step-by-step explanation:
Class width is said to be the difference between the upper class limit and the lower class limit consecutive classes of a grouped data. To calculate class width, this formula can be used:
CW = UCL - LCL
Where,
CW= Class width
UCL= Upper class limit
LCL= Lower class limit
From the table above:
For class 1, CW = 64 - 60 = 4
For class 2, CW = 69 - 65 = 4
For class 3, CW = 74 - 70 = 4
For class 4, CW = 79 - 75 = 4
For class 5, CW = 84 - 80 = 4
Therefore, the class width of the grouped data = 4

Let's solve ~




Hence, the correct choice is D