Hey there,
Your question states: <span>A store charges $2.10 for a medium bag of fruit slices. Assuming that the rate stays the same, how much should the store charge for a large bag of the slices?
So sense this is a medium bad of fruit slices, we would divide 2.10 by 2.
Your answer would be 1.5 Now, all we do is we add 2.10+1.5 and we get 3.15. The reason would be because sense we now know the price of the size of it being small, we just add that size on top of the medium size to get 3.15.
Hope this helps.
~Jurgen</span>
Answer:
12 I think?
Step-by-step explanation:
In normal line integration, from what I understand, you are measuring the area underneath (,)
f
(
x
,
y
)
along a curve in the -
x
-
y
plane from point
a
to point
b
.
The estimate of the total sales is $3,055,510.08.
First I created a scatter plot of the data given for yellow golf balls and calculated the linear regression for it. Screenshots are attached.
The regression equation (equation for the line of best fit) was
y = 16488x + 189312, where x represents the year number and y is the total yellow golf balls.
We are concerned with year 4, so we will substitute 4 for x:
y = 16488(4) + 189312 = 255,264
There will be around 255,264 yellow golf balls sold in year 4.
Since the ratio of yellow to white golf balls is 1:5, we can set up a proportion:
1/5 = 255264/x
Cross multiply:
1*x = 5*255264
x = 1,276,320
We expect the company to sell 1,276,320 white golf balls. This makes a total of:
1,276,320 + 255,264 = 1,531,584 total golf balls expected to be sold in year 4.
Since these are sold in boxes of 12, we divide this by 12:
1,531,584/12 = 127,632 boxes expected to be sold
Each box is 23.94:
127632*23.94 = 3,055,510.08
<u>Given</u>:
The base of a rectangular prism has an area of 25 square meters. The height of the rectangular prism is 4 meters.
We need to determine the volume of the rectangular prism.
<u>Volume of the rectangular prism:</u>
The volume of the rectangular prism can be determined using the formula,

where B is the base area and h is the height of the prism
Substituting B = 25 and h = 4 in the above formula, we get;


Thus, the volume of the rectangular prism is 100 cubic meters.