Answer:
P=1/42.
Step-by-step explanation:
We know that the student council has 10 members where 5 of the members are Seniors. They need to choose a President, Vice President, Secretary and Treasurer. We calculate the probability that the President is a Senior:
We calculate the number of possible combinations:

Number of favorable combinations is 5.
Threfore, the probability is
P=5/210
P=1/42.
8, 72 pieces of recycling sorted into 9 bins will make 8 in each bin.
Answer:
Midpoint (-2,4)
distance nearest tenth = 8.9
The approximate distance = 9
Step-by-step explanation:
Formulas
PQ midpoint = (x2 + x1)/2, (y2 + y1)/2
distance d = sqrt( (x2 - x1)^2 + (y2 - y1)^2 )
Givens
x2 = -4
x1 = 0
y2 = 1
y1 = 7
Solution
M(PQ) = (-4+0)/2, (1 + 7)/2
M(PQ) = -2, 4
The midpoint is -2,4
The distance = sqrt( (4 - 0)^2 + (1 + 7)^2 )
The distance = sqrt(16 + 64)
The distance = sqrt(80)
The distance = 4√5 exactly
The distance = 8.94
The distance = 8.9 To the nearest tenth
Question 2
The distance is rounded to the nearest whole number which is 9.
With continuous data, it is possible to find the midpoint of any two distinct values. For instance, if h = height of tree, then its possible to find the middle height of h = 10 and h = 7 (which in this case is h = 8.5)
On the other hand, discrete data can't be treated the same way (eg: if n = number of people, then there is no midpoint between n = 3 and n = 4).
-------------------------------------
With that in mind, we have the following answers
1) Continuous data. Time values are always continuous. Any two distinct time values can be averaged to find the midpoint
2) Continuous data. Like time values, temperatures can be averaged as well.
3) Discrete data. Place locations in a race or competition are finite and we can't have midpoints. We can't have a midpoint between 9th and 10th place for instance.
4) Continuous data. We can find the midpoint and it makes sense to do so when it comes to speeds.
5) Discrete data. This is a finite number and countable. We cannot have 20.5 freshman for instance.
Answer:
A
Step-by-step explanation:
He needs to collect at least 120 so if c is what he must still collect
64 +c must be greater than or equal to 120