
<em> </em><em>Linear</em><em> </em><em>Pair</em><em> </em>: - <em>Two</em><em> </em><em>adjacent</em><em> </em><em>Angles</em><em> </em><em>are</em><em> </em><em>set</em><em> </em><em>to</em><em> </em><em>form</em><em> </em><em>a</em><em> </em><em>linear</em><em> </em><em>pair</em><em> </em><em>of</em><em> </em><em>angles</em><em> </em><em>if</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>not</em><em> </em><em>common</em><em> </em><em>arm</em><em> </em><em>are</em><em> </em><em>two</em><em> </em><em>opposite</em><em>,</em><em> </em><em>is</em><em> </em><em>called</em><em> </em><em>linear</em><em> </em><em>pair</em><em> </em>~™
12/66--->x/22
12/66--->4/22 (almost 4/20 if you know what I mean)
Answer:
You can't solve number 2 without solving number 1 first. Subtract 19.99 from the total amount left (answer to number 2)
Step-by-step explanation:
The second and third functions both decrease with a slope of -4, but the second fiction has a y intercept of -3 and the third has a y intercept of +3. The first and fourth functions are both increasing with a slope of positive 4. The first one has a y intercept of -3, but the fourth has a y- intercept of -3. all of the functions are linear.
it helps to write all as equations
I know the first 3 are c. I'm pretty sure the last one is a or d