Answer: the probability that a selected cup will be overfilled is 0.16
Step-by-step explanation:
Since amount of hot chocolate dispensed by a hot chocolate machine is normally distributed,
we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = amount of hot chocolate dispensed by a hot chocolate machine.
µ = mean
σ = standard deviation
From the information given,
µ = 16.0 oz
σ = 2 oz
We want to find the probability that a selected cup will be overfilled. Since the cup can hold 18.0 oz, the expression would be
P(x > 18) = 1 - P(x ≤ 18)
For x = 18,
z = (18 - 16)/2 = 1
Looking at the normal distribution table, the probability corresponding to the z score is 0.84
P(x > 18) = 1 - 0.84 = 0.16
Only twice 3, 11 are only ones
Answer:
the answer would be A. a measure of center, such as the median
Step-by-step explanation:
A measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
Some examples of a measure of center are median and mode. Some examples of a measure of variation are interquartile range and mean absolute deviation.
The salon manager wants one number to summarize all the values of the data set.
Answer:
<em>option</em><em> </em><em>c </em><em>is </em><em>correct</em><em>,</em>
<em>as </em><em>they </em><em>are </em><em>correspondence</em><em> </em><em>angles </em><em>their </em><em>values </em><em>are </em><em>same </em><em>so,</em>
<em>x </em><em>+</em><em> </em><em>2</em><em>5</em><em>°</em><em> </em><em>=</em><em> </em><em>5</em><em>5</em><em>°</em>
<em>→</em><em> </em><em>x </em><em>=</em><em> </em><em>5</em><em>5</em><em>°</em><em> </em><em>-</em><em> </em><em>2</em><em>5</em><em>°</em>
<em>→</em><em> </em><em>x </em><em>=</em><em> </em><em>3</em><em>0</em><em>°</em><em> </em><em>ans</em>
<em><u>hope </u></em><em><u>this</u></em><em><u> answer</u></em><em><u> helps</u></em><em><u> you</u></em><em><u> dear</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care</u></em><em><u> and</u></em><em><u> may</u></em><em><u> u</u></em><em><u> have</u></em><em><u> a</u></em><em><u> great</u></em><em><u> day</u></em><em><u> ahead</u></em><em><u>!</u></em>