we are given
f(x)=[x=1]
where bracket means ceiling functions
we know that
Ceiling function returns the least value of the integer that is greater than or equal to the specified number
so, we can check each options
option-A:

At x=-4:
f(x)=[-4-1] =-5
For x<-3:
Let's assume
x=-3.1
f(x)=[-3.1-1] =[-4.1]=-5
so, this interval is TRUE
option-B:

At x=-2:
f(x)=[-2-1] =-3
For x<-1:
Let's assume
x=-1.1
f(x)=[-1.1-1] =[-2.1]=-3
so, this is FALSE
Υм ι тнιʝк ιтѕ 300 .нσρє ιт нєℓρѕ
Answer:
1.89
Step-by-step explanation:
7.56 ÷ 4 = 1.89
Exponent rule : (a^b)^c = a^(b*c)
31. (x^2)^3 = x^(2 * 3) = x^6
32. (a^7)^5 = a^(7 * 5) = a^35
33. (y^13)^4 = y^(13 * 4) = y^52
34. (w^-21)^-15 = w^(-21*-15) = w^315
35. (5^2)^3 = 5^(2 * 3) = 5^6
36. (23^7)^8 = 23^(7 * 8) = 23^56
37. (-y^5)^4 = -y^(5 * 4) = y^20
38. (4y^3)^2 = 4^2 y^(3 * 2) = 16y^6
39. (8c^5)^2 = 8^2 c^(5 * 2) = 64c^10
40. (-3h^9)^2 = -3^2 h^(9 * 2) = 9h^18
41. (y^4d^6)^3 = y^(4 * 3)d^(6 * 3) = y^12d^18
42. (-15h^9k^7)^3 = -15^3h^(9*3)k^(7*3) = -3375h^27k^21
43. (k^9)^5(k^3)^2 = k(9 * 5)k^(3 * 2) = (k^45)(k^6) = k^51
44. (3y^6)^2 (x^5y^2z) = 3^2y^(6*2)(x^5y^2z) = 9y^12(x^5y^2z) =
9x^5y^14z
45. (4h^3)^2 (-2g^3h)^3 = 4^2h^(3*2) (-2^3g^(3*3)h^3) = 16h^6(-8g^9h^3)
= -128g^9h^9
46. (14a^4b^6)^2 (a^6c^3)^2 = 14^2a^(4*2)b^(6*2) (a^(6*2)c^(3*2) =
196a^8b^12(a^12c^6) = 196a^20b^12c^6
Answer:
huhh
Step-by-step explanation: