Answer:
√(p²-4q)
Step-by-step explanation:
Using the Quadratic Formula, we can say that
x = ( -p ± √(p²-4(1)(q))) / 2(1) with the 1 representing the coefficient of x². Simplifying, we get
x = ( -p ± √(p²-4q)) / 2
The roots of the function are therefore at
x = ( -p + √(p²-4q)) / 2 and x = ( -p - √(p²-4q)) / 2. The difference of the roots is thus
( -p + √(p²-4q)) / 2 - ( ( -p - √(p²-4q)) / 2)
= 0 + 2 √(p²-4q)/2
= √(p²-4q)
You can’t? I mean like adding 100 at a time or-
Combining the like terms, the simplified polynomials are given as follows:
a) 4x² - 14x + 17
b) -5x² - 20x + 8
<h3>How are polynomials simplified?</h3>
Polynomials are simplified combining the like terms, that is, adding these numbers with the same variable.
Item a:
4(x - 2)(x + 1) - 5(2x - 5)
Applying the distributive property:
4(x² - x - 2) - 10x + 25
4x² - 4x - 8 - 10x + 25
Combining the like terms:
4x² - 4x - 10x - 8 + 25
4x² - 14x + 17
Item b:
-5(x + 2)² + 28
-5(x² + 4x + 4) + 28
-5x² - 20x - 20 + 28
-5x² - 20x + 8
More can be learned about the simplification of polynomials at brainly.com/question/24450834
#SPJ1
The maximum height the ball achieves before landing is 682.276 meters at t = 0.
<h3>What are maxima and minima?</h3>
Maxima and minima of a function are the extreme within the range, in other words, the maximum value of a function at a certain point is called maxima and the minimum value of a function at a certain point is called minima.
We have a function:
h(t) = -4.9t² + 682.276
Which represents the ball's height h at time t seconds.
To find the maximum height first find the first derivative of the function and equate it to zero
h'(t) = -9.8t = 0
t = 0
Find second derivative:
h''(t) = -9.8
At t = 0; h''(0) < 0 which means at t = 0 the function will be maximum.
Maximum height at t = 0:
h(0) = 682.276 meters
Thus, the maximum height the ball achieves before landing is 682.276 meters at t = 0.
Learn more about the maxima and minima here:
brainly.com/question/6422517
#SPJ1