Answer:
y = 3/5x + 62/5
Step-by-step explanation:
Equation of a line with two points is
m = y - y_1 / x - x _1
m = y_2 - y_1 / x_2 - x _1
Equating both
y - y_1 / x - x_1 = y_2 - y_1 / x_2 - x_1
Using what we are provided with
(-4 , 10)(16 , -2)
x_1 = -4
y_1 = 40
x_2 = 16
y_2 = -2
Imputing the values
10 - (-2) / 16 - (-4) = y - 10 / x - (-4)
10 + 2 /16 + 4 = y - 10 / x + 4
12 / 20 = y - 10 / x + 4
Lets cross multiply
12 ( x + 4) = 20(y - 10)
Open the brackets
12x + 48 = 20y - 200
12x + 48 + 200 = 20y
12x + 248 = 20y
Following this equation of line
y = mx + C
20y = 12x + 248
Let's divide through by 20 to get y.
20y / 20 = 12x + 248 / 20
y = 12x + 248 / 20
We can separate it by
y = 12x / 20 + 248 / 20
y = 3/5x + 62/5
Therefore, the equation of the line is
y = 3/5x + 62/5
Answer:
a is 5 so the perinmeter is 30
Answer:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c.
Step-by-step explanation:
In order to solve this question, it is important to notice that the derivative of the expression (1 + sin(x)) is present in the numerator, which is cos(x). This means that the question can be solved using the u-substitution method.
Let u = 1 + sin(x).
This means du/dx = cos(x). This implies dx = du/cos(x).
Substitute u = 1 + sin(x) and dx = du/cos(x) in the integral.
∫((cos(x)*dx)/(√(1+sin(x)))) = ∫((cos(x)*du)/(cos(x)*√(u))) = ∫((du)/(√(u)))
= ∫(u^(-1/2) * du). Integrating:
(u^(-1/2+1))/(-1/2+1) + c = (u^(1/2))/(1/2) + c = 2u^(1/2) + c = 2√u + c.
Put u = 1 + sin(x). Therefore, 2√(1 + sin(x)) + c. Therefore:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c!!!
The vertical stretch of f(x) to g(x) is a factor of 5
<h3>How to determine the dilation?</h3>
The functions are given as:
f(x) = x
g(x) = 5x
Substitute f(x) = x in g(x) = 5x
g(x) = 5f(x)
In th above equation, the factor is 5.
5 is greater than 1 (this means vertical stretch)
Hence, the vertical stretch of f(x) to g(x) is a factor of 5
Read more about dilation at:
brainly.com/question/3457976
#SPJ1
Answer:
d
Step-by-step explanation:
An angle is straight if and only if its measure is 180