The 2 interior angles add to the exterior angle
26+13=x
39=x
x=39°
because
remember, all angles add to 180
26+13+BCA=180
39+BCA=180
minus 39 both sides
BCA=141
look, we want x
BC is a striaign line which is 180
BCA+x=180
141+x=180
minus 141 from both sides
x=39°
Answer:
$3.15
Step-by-step explanation:
tax is 9% or .09 of the cost
$35(.09) = $3.15
Answer:
547
Step-by-step explanation:
Answer:
7789 i think this is the answer
Step-by-step explanation:
First off, we factor out the expression:

In the bracket, separate 8 out of the expression.
![\displaystyle \large{y = 2[ ( {x}^{2} - 6x + 8)] }\\ \displaystyle \large{y = 2[ ( {x}^{2} - 6x) + 8]}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%28%20%7Bx%7D%5E%7B2%7D%20-%206x%20%2B%208%29%5D%20%7D%5C%5C%20%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%28%20%7Bx%7D%5E%7B2%7D%20-%206x%29%20%2B%208%5D%7D)
In x^2-6x, find the third term that can make up or convert it to a perfect square form. The third term is 9 because:

So we add +9 in x^2-6x.
![\displaystyle \large{y = 2[ ( {x}^{2} - 6x + 9) + 8]}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%28%20%7Bx%7D%5E%7B2%7D%20-%206x%20%2B%209%29%20%20%2B%208%5D%7D)
Convert the expression in the small bracket to perfect square.
![\displaystyle \large{y = 2[ {(x - 3)}^{2} + 8]}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20%2B%208%5D%7D)
Since we add +9 in the small bracket, we have to subtract 8 with 9 as well.
![\displaystyle \large{y = 2[ {(x - 3)}^{2} + 8 - 9]} \\ \displaystyle \large{y = 2[ {(x - 3)}^{2} - 1]}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20%2B%208%20-%209%5D%7D%20%5C%5C%20%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20-%201%5D%7D)
Then we distribute 2 in.
![\displaystyle \large{y = 2[ {(x - 3)}^{2} - 1]} \\](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20-%201%5D%7D%20%5C%5C%20)
![\displaystyle \large{y = 2[ {(x - 3)}^{2} - 1]} \\ \displaystyle \large{y = [2 \times {(x - 3)}^{2} ]+[ 2 \times ( - 1)] } \\ \displaystyle \large{y = 2 {(x - 3)}^{2} - 2 }](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20-%201%5D%7D%20%5C%5C%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%20%5B2%20%5Ctimes%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%5D%2B%5B%202%20%5Ctimes%20%28%20-%201%29%5D%20%7D%20%5C%5C%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20-%202%20%7D)
Remember that negative multiply positive = negative.
Hence the vertex form is y = 2(x-3)^2-2 or first choice.