Answer:
1=x
Step-by-step explanation:
<h2>Question 9:</h2>
1. Use Pythagorean Theorem (a²+b²=c²) to solve for missing side of triangle and rectangle. x²+16²=20², or x²+256=400. So, x²=144, and x=12
2. Use formula: 1/2(h)(b1+b2). 1/2 (12) (30+14).
3. Simplify: 1/2 (12) (44)=1/2(528)=264
Area of whole figure is 264 square mm.
<h2>Question 10:</h2>
Literally same thing but with trigonometry.
1. Use sine to find out length of dotted line: sin(60°)=x/12
2: Simplify: 12*sin(60°)=x. x≈10.4 (rounded to the nearest tenth)
3. Use Pythagorean Theorem to find out last leg of triangle: 10.4²+x²=12²
4: Simplify: 108.16 +x²=144. x²=35.84 ≈ 6
5: Use formula: 1/2(h)(b1+b2). 1/2 (10.4) (30+36)
6: Simplify: 1/2 (10.4) (66) =343.2
7: Area of figure is about 343.2
Remember, this is an approximate answer with rounding, so it might not be what your teacher wants. The best thing to do is do it yourself again.
<h2>Answer:
y = - ¹/₂ x + 5
</h2>
<h3>Step-by-step explanation:
</h3>
<u>Find the slope of the perpendicular line</u>
When two lines are perpendicular, the product of their slopes is -1. This means that the slopes are negative-reciprocals of each other.
⇒ if the slope of this line = 2 (y = 2x + 2)
then the slope of the perpendicular line (m) = - ¹/₂
<u>Determine the equation</u>
We can now use the point-slope form (y - y₁) = m(x - x₁)) to write the equation for this line:
⇒ y - 3 = - ¹/₂ (x - 4)
We can also write the equation in the slope-intercept form by making y the subject of the equation and expanding the bracket to simplify:
since y - 3 = - ¹/₂ (x - 4)
y = - ¹/₂ x + 5 (in slope-intercept form)
Answer:
121.5
Step-by-step explanation: so what u are supost to do is multiply the sides which will give you your answer of 121.5.