I believe the correct answer from the choices listed above is option D. The graph <span>G(x) as compared to the graph of F(x) would be that the </span><span>graph of G(x) is the graph of F(x) stretched vertically and shifted 5 units down. 2 is a stretch factor and -5 is the shift downwards of the graph. Hope this answers the question.</span>
75p is the correct answer because 1 lemon is 15p
Answer:
It doubled up is what you could say
It’s hard to see the image
The vendor has to sell 88 gingerbread houses to earn a profit of $665.60 and there is no chance that the vendor will earn $1500.
Given an equation showing profits of A Christmas vendor as
P=-0.1
+30g-1200.
We have to find the number of gingerbread houses that the vendor needs to sell in order to earn profit of $665.60 and $1500.
To find the number of gingerbread houses we have to put P=665.60 in the equation given which shows the profit earned by vendor.
665.60=-0.1
+30g-1200
0.1
-30g+1200+665.60=0
0.1
-30g+1865.60=0
Divide the above equation by 0.1.
-300g+18656=0
Solving for g we get,
g=[300±
]/2*1
g=[300±![\sqrt{90000-74624}]/2](https://tex.z-dn.net/?f=%5Csqrt%7B90000-74624%7D%5D%2F2)
g=[300±
]/2
g=(300±124)/2
g=(300+124)/2 , g=(300-124)/2
g=424/2, g=176/2
g=212,88
Because 212 is much greater than 88 so vendor prefers to choose selling of 88 gingerbread houses.
Put the value of P=1500 in equation P=-0.1
+30g-1200.
-0.1
+30g-1200=1500
0.1
-30g+1500+1200=0
0.1
-30g+2700=0
Dividing equation by 0.1.
-300g+27000=0
Solving the equation for finding value of g.
g=[300±
]/2*1
=[300±![\sqrt{90000-108000}] /2](https://tex.z-dn.net/?f=%5Csqrt%7B90000-108000%7D%5D%20%2F2)
=[300±
]/2
Because
comes out with an imaginary number so it cannot be solved for the number of gingerbread houses.
Hence the vendor has to sell 88 gingerbread houses to earn a profit of $665.60 and there is no chance that the vendor will earn $1500.
Learn more about equation at brainly.com/question/2972832
#SPJ1