1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
14

Integrate

rt{1+e^{2x} } dx" alt="e^{4x}\sqrt{1+e^{2x} } dx" align="absmiddle" class="latex-formula"> please show work so i can learn
Mathematics
1 answer:
AnnyKZ [126]3 years ago
3 0

Answer:

(\frac{(1+e^{2x}) ^{\frac{5}{2} } }{{5}} + \frac{(1+e^{2x} )^{\frac{3}{2} } }{{3}} )+C

Step-by-step explanation:

<u><em> Step(i):-</em></u>

Given that the function

                    f(x) = e^{4x} \sqrt{1+e^{2x} }

Now integrating on both sides, we get

                 \int\limits{f(x)} \, dx = \int\limits{e^{4x} \sqrt{1+e^{2x} } dx

                               =    \int\limits{e^{2x} e^{2x} \sqrt{1+e^{2x} } dx

                         

<u><em>Step(ii):-</em></u>

  Let  1 + e^{2x}  = t

           e^{2x}  = t -1  

          2e^{2x}dx = d t

          e^{2x}dx = \frac{1}{2} d t

                = \int\limits{( \sqrt{1+e^{2x} }) e^{2x} e^{2x} dx

                  = \int\limits {\sqrt{t}(t-1)\frac{1}{2} dt }

                 = \frac{1}{2} \int\limits {\sqrt{t} (t) -\sqrt{t} ) dt }

                = \frac{1}{2} \int\limits {(t^{\frac{1}{2}  } t^{1} +t^{\frac{1}{2} } ) } \, dx

                = \frac{1}{2} \int\limits {(t^{\frac{3}{2}  } +t^{\frac{1}{2} } ) } \, dx

               = \frac{1}{2} (\frac{t^{\frac{3}{2} +1} }{\frac{3}{2}+1 } + \frac{t^{\frac{1}{2} +1} }{\frac{1}{2}+1 } )+C

              =  \frac{1}{2} (\frac{t^{\frac{3}{2} +1} }{\frac{5}{2} } + \frac{t^{\frac{1}{2} +1} }{\frac{3}{2} } )+C

             = \frac{1}{2} (\frac{t^{\frac{5}{2} } }{\frac{5}{2} } + \frac{t^{\frac{3}{2} } }{\frac{3}{2} } )+C

            = (\frac{(1+e^{2x}) ^{\frac{5}{2} } }{{5}} + \frac{(1+e^{2x} )^{\frac{3}{2} } }{{3}} )+C

<u><em>Final answer:-</em></u>

= (\frac{(1+e^{2x}) ^{\frac{5}{2} } }{{5}} + \frac{(1+e^{2x} )^{\frac{3}{2} } }{{3}} )+C

             

You might be interested in
Which of the following is not one of the 8th roots of unity?
Anika [276]

Answer:

1+i

Step-by-step explanation:

To find the 8th roots of unity, you have to find the trigonometric form of unity.

1.  Since z=1=1+0\cdot i, then

Rez=1,\\ \\Im z=0

and

|z|=\sqrt{1^2+0^2}=1,\\ \\\\\cos\varphi =\dfrac{Rez}{|z|}=\dfrac{1}{1}=1,\\ \\\sin\varphi =\dfrac{Imz}{|z|}=\dfrac{0}{1}=0.

This gives you \varphi=0.

Thus,

z=1\cdot(\cos 0+i\sin 0).

2. The 8th roots can be calculated using following formula:

\sqrt[8]{z}=\{\sqrt[8]{|z|} (\cos\dfrac{\varphi+2\pi k}{8}+i\sin \dfrac{\varphi+2\pi k}{8}), k=0,\ 1,\dots,7\}.

Now

at k=0,  z_0=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 0}{8}+i\sin \dfrac{0+2\pi \cdot 0}{8})=1\cdot (1+0\cdot i)=1;

at k=1,  z_1=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 1}{8}+i\sin \dfrac{0+2\pi \cdot 1}{8})=1\cdot (\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};

at k=2,  z_2=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 2}{8}+i\sin \dfrac{0+2\pi \cdot 2}{8})=1\cdot (0+1\cdot i)=i;

at k=3,  z_3=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 3}{8}+i\sin \dfrac{0+2\pi \cdot 3}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};

at k=4,  z_4=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 4}{8}+i\sin \dfrac{0+2\pi \cdot 4}{8})=1\cdot (-1+0\cdot i)=-1;

at k=5,  z_5=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 5}{8}+i\sin \dfrac{0+2\pi \cdot 5}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};

at k=6,  z_6=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 6}{8}+i\sin \dfrac{0+2\pi \cdot 6}{8})=1\cdot (0-1\cdot i)=-i;

at k=7,  z_7=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 7}{8}+i\sin \dfrac{0+2\pi \cdot 7}{8})=1\cdot (\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};

The 8th roots are

\{1,\ \dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2},\ i, -\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2},\ -1, -\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2},\ -i,\ \dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2}\}.

Option C is icncorrect.

5 0
3 years ago
Brandon has a box 9.5 inches tall, 3.8 inches wide , and 4.2 inches long how many square inches of wrapping paper does he need t
Flauer [41]
The answer to your question is 151.6200 hope I helped
7 0
4 years ago
in a random sample of 200 people, 154 said that they watched educational television. fine the 90% confidence interval of the tru
melisa1 [442]

Answer:

[0.7210,0.8189] = [72.10%, 81.89%]

Step-by-step explanation:

The sample size is  

n = 200

the proportion is

p = 154/200 = 0.77

<em>Since both np ≥ 10 and n(1-p) ≥ 10 </em>

<em>We can approximate this discrete binomial distribution with the continuous Normal distribution. As the sample size is large enough, not applying the continuity correction factor makes no significant  difference. </em>

The approximation would be to a Normal curve with this parameters:

<em>Mean </em>

p = 0.77

<em>Standard deviation </em>

\bf s=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.77*0.23}{200}}=0.0298

The 90% confidence interval for the proportion would be then  

\bf  [0.77-z^*0.0298, 0.77+z^*0.0298]

where \bf z^* is the 10% critical value for the Normal N(0,1) distribution , this is a value such that the area under the N(0,1) curve outside the interval \bf [-z^*,z^*] is 10%=0.1

We can either use a table, a calculator or a spreadsheet to get this value.

In Excel or OpenOffice Calc we use the function

<em>NORMSINV(0.95) and we get a value of 1.645 </em>

The 90% confidence interval for the proportion is then

\bf  [0.77-1.645^*0.0298, 0.77+1.645^*0.0298]=[0.7210,0.8189]

This means there is a 90% probability that the proportion of people who watch educational television is between 72.10% and 81.89%

If the television company wanted to publicize the proportion of viewers, do you think it should use the 90% confidence interval?

Yes, I do.

5 0
3 years ago
What factors of 48 are multiples of 4
docker41 [41]
4, 8, 12, 16, and 24
8 0
3 years ago
Read 2 more answers
What is the value of 9905482
Vladimir79 [104]
9= 9,000,000/ nine million
9= 900,000/ nine hundred thousand
0= since there's no value we leave it out.
5= 5000/ five thousand
4= 400/ four hundred
8= 80/ eighty
2= 2/two
So your answer is:
Nine million nine hundred thousand five thousand four hundred and eighty two.
3 0
3 years ago
Other questions:
  • Could I get an explanation and some help?
    5·1 answer
  • The quotient of P and 18 is equal to the sum of p<br> and 17.<br><br><br><br> Write The expression:
    11·1 answer
  • Roger is ordering flowers for his cousin's wedding. Each flower is $1.25 and the delivery charge is $15 dollars no matter how ma
    10·1 answer
  • 16 POINTSS!! HELPPPP The graph shows the cost per day of electricity over a seven-day period.
    14·1 answer
  • Find the slope, if it exists, of the line containing the points (3,-1) and (3, -6).
    14·1 answer
  • Please help with this question!!
    6·2 answers
  • Please help me and make sure to show your work
    5·2 answers
  • What is the measure of angle ADC?
    8·1 answer
  • Patty needed 6 bags of candy for a party which cost 153. She forgot to invite some friends and now needs another 5 bags of candy
    14·1 answer
  • Pls help it’s due by midnight
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!