(1.082)^15(500)=$ 1,630.71. I do not see this figure as an option, but it is the correct response.
Three hundred fourteen thousand ,two hundred seven
It’s 1.875
Hope this helps!
Answer:

General Formulas and Concepts:
<u>Pre-Calculus</u>
2x2 Matrix Determinant:

3x3 Matrix Determinant:

<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Limit Property [Multiplied Constant]:

Special Limit Rule [L’Hopital’s Rule]:

Derivatives
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:

Derivative Rule [Chain Rule]:
![\displaystyle [u(v)]' = u'(v)v'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Bu%28v%29%5D%27%20%3D%20u%27%28v%29v%27)
Step-by-step explanation:
*Note:
I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.
<u />
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />

<u>Step 2: Find Limit Pt. 1</u>
- [Function] Simplify [3x3 and 2x2 Matrix Determinant]:

- [Function] Substitute in <em>x</em>:

<u>Step 3: Find Limit Pt. 2</u>
- [Limit] Rewrite [Limit Property - Multiplied Constant]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":
![\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%20%5CDelta%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%7D%7Bdh%7D%20%3D%20-3%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%20tan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%203%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%2B%203%20%5Cbigg%5D%20-%203%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%2B%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%206%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%206%20%5Cbigg%5D)

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:
![\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2%20%5CDelta%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%7D%7Bdh%5E2%7D%20%3D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20-%202%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20-%20%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D)
![\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%2B%20%5Ctan%5E3%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20-%20%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%2B%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D)
![\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20-%202%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D%20%2B%202%20%5Ctan%5E3%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D)

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

∴ we have <em>evaluated</em> the given limit.
---
Learn more about limits: brainly.com/question/27438198
---
The difference of squares is 4m^2 - 20mn + 25n^2
Its a perfect square trinomial.
<h2>What is
perfect square trinomial?</h2>
A perfect square trinomial is the square of a binomial. It follows a pattern when it is factored, so that the first and last terms are perfect squares of monomials and the middle term is twice their product. If the pattern does not fit for a particular trinomial, it is not a perfect square trinomial.
<h3>How to solve this equation?</h3>
(-2m + 5n)^2
(-2m + 5n)(-2m + 5n)
4m^2-10mn-10mn+25n^2
4m^2 - 20mn + 25n^2
Thus, the difference of squares is 4m^2 - 20mn + 25n^2
Its a perfect square trinomial.
To learn more about solving equation visit:
brainly.com/question/2546389
#SPJ4