1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
2 years ago
14

Please help! Related to limits! 100 points!

Mathematics
1 answer:
creativ13 [48]2 years ago
3 0

Answer:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

General Formulas and Concepts:
<u>Pre-Calculus</u>

2x2 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b \\ c & d \end{array} \right| = ad - bc

3x3 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = a \left| \begin{array}{ccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{ccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{ccc} d & e \\ g & h \end{array} \right|

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Limit Property [Multiplied Constant]:
\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Derivatives

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.

<u />

<u>Step 1: Define</u>

<em>Identify given.</em>

<em />\displaystyle \Delta (x) = \left| \begin{array}{ccc} \tan x & \tan (x + h) & \tan (x + 2h) \\ \tan (x + 2h) & \tan x & \tan (x + h) \\ \tan (x + h) & \tan (x + 2h) & \tan x \end{array} \right|

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2}

<u>Step 2: Find Limit Pt. 1</u>

  1. [Function] Simplify [3x3 and 2x2 Matrix Determinant]:
    \displaystyle \Delta (x) = \tan^3 (2h + x) + \tan^3 (h + x) + \tan^3 x - 3 \tan x \tan (h + x) \tan (2h + x)
  2. [Function] Substitute in <em>x</em>:
    \displaystyle \Delta \bigg( \frac{\pi}{3} \bigg) = \tan^3 \bigg( 2h+  \frac{\pi}{3} \bigg) + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) + 3\sqrt{3} - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h+  \frac{\pi}{3} \bigg)

<u>Step 3: Find Limit Pt. 2</u>

  1. [Limit] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \lim_{h \to 0} \frac{\Delta (\frac{\pi}{3})}{h^2}
  2. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \bigg( \frac{0}{0} \bigg)

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":

\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]

\displaystyle \frac{d}{dh} h^2 = 2h

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:

\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]

\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle \frac{d^2}{dh^2} h^2 = 2

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

∴ we have <em>evaluated</em> the given limit.

---

Learn more about limits: brainly.com/question/27438198

---

You might be interested in
Please estimate 75×5 what's the answer?
charle [14.2K]
Hi , so without using any device or thing to get the answer I think that 75×5 equals 375 , now I'm going to check my answer , my answer is correct .What I always do is add , so basically I did this 75+75+75+75+75 =375.
8 0
3 years ago
Read 2 more answers
Johnny ate 200 jars of his fathers sugar if johnny got a warning from his papa (While T-posing and floating to him) every 10 jar
katen-ka-za [31]

Answer:

I assume the answer would be that f(x) = 6(x) increases over the interval x = 3 to x = 4

Step-by-step explanation:6 x 3 is 18 and 6 x 4 is 24, so over the interval x = 3 to x = 4 f(x) would increase.

7 0
3 years ago
Read 2 more answers
A decimal that is 1/10 of 3.0
just olya [345]
0.3 I believe



I hope this helped (:
7 0
3 years ago
Please help e and my sister want to go somewhere but we cant because of this​
gtnhenbr [62]

Answer:

1 5/12 lb

Step-by-step explanation:

This is a subtraction problem.

He started with 4 2/3 lb and used 3 1/4 lb, so you need to subtract 3 1/4 lb from 4 2/3 lb.

Notice that the fractions do not have the same denominator, so we need a common denominator and equivalent fractions.

We start with the

subtraction below

       4 2/3

  -    3 1/4

---------------

The least common denominator of 3 and 4 is 12. 12/3 = 4, and 12/4 = 3, so we get equivalent fractions with the common denominator 12.

We use the LCD to get

the subtraction below

       4 8/12

  -    3 3/12

----------------

Now we subtract the whole numbers and the fractions.

       4 8/12

  -    3 3/12

----------------

       1 5/12

Answer: 1 5/12 lb

8 0
3 years ago
Which of these describes the system of linear equations below?
Nataly [62]

Given:

The system of equations is

3x-2y=7

6x-4y=14

To find:

The correct statement for the given system of equations.

Solution:

On comparing the given equations and general form of linear equation, i.e., ax+by+c=0, we get

a_1=3,b_1=-2,c_1=-7

a_2=6,b_2=-4,c_2=-14

Here,

\dfrac{a_1}{a_2}=\dfrac{3}{6}=\dfrac{1}{2}

\dfrac{b_1}{b_2}=\dfrac{-2}{-4}=\dfrac{1}{2}

\dfrac{c_1}{c_2}=\dfrac{-7}{-14}=\dfrac{1}{2}

Since, \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}, therefore, the two equations are equivalent and the system has infinitely many solutions.

Hence, the correct option is b.

4 0
3 years ago
Other questions:
  • The tree grew_____. What is a adverb. Please help
    7·2 answers
  • A truck with 32-inch diameter wheels is traveling at 60 mi/h. Find the angular speed of the wheels in rad/min. How many revoluti
    14·1 answer
  • The standard normal distribution has a mean of<br><br> and a standard deviation of
    14·1 answer
  • NEED THE ANSWER NOW!
    11·1 answer
  • mary is eighteen years older than her son. she was three times as old as he was one year ago.How old are they now?
    12·1 answer
  • Pls help, more equations. If you answer, you can do it on paper, then take a photo and post it as your answer
    6·1 answer
  • Que multiplicación me da a 100 como resultado?
    15·2 answers
  • You are getting ready for your graduation party so you by eight cases of soda each case has 24 cans of soda and each can hold 12
    5·1 answer
  • 12 is 60, percent of what number?
    13·1 answer
  • Answer below.<br><br> Please answer!!!!
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!