1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
2 years ago
14

Please help! Related to limits! 100 points!

Mathematics
1 answer:
creativ13 [48]2 years ago
3 0

Answer:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

General Formulas and Concepts:
<u>Pre-Calculus</u>

2x2 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b \\ c & d \end{array} \right| = ad - bc

3x3 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = a \left| \begin{array}{ccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{ccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{ccc} d & e \\ g & h \end{array} \right|

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Limit Property [Multiplied Constant]:
\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Derivatives

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.

<u />

<u>Step 1: Define</u>

<em>Identify given.</em>

<em />\displaystyle \Delta (x) = \left| \begin{array}{ccc} \tan x & \tan (x + h) & \tan (x + 2h) \\ \tan (x + 2h) & \tan x & \tan (x + h) \\ \tan (x + h) & \tan (x + 2h) & \tan x \end{array} \right|

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2}

<u>Step 2: Find Limit Pt. 1</u>

  1. [Function] Simplify [3x3 and 2x2 Matrix Determinant]:
    \displaystyle \Delta (x) = \tan^3 (2h + x) + \tan^3 (h + x) + \tan^3 x - 3 \tan x \tan (h + x) \tan (2h + x)
  2. [Function] Substitute in <em>x</em>:
    \displaystyle \Delta \bigg( \frac{\pi}{3} \bigg) = \tan^3 \bigg( 2h+  \frac{\pi}{3} \bigg) + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) + 3\sqrt{3} - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h+  \frac{\pi}{3} \bigg)

<u>Step 3: Find Limit Pt. 2</u>

  1. [Limit] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \lim_{h \to 0} \frac{\Delta (\frac{\pi}{3})}{h^2}
  2. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \bigg( \frac{0}{0} \bigg)

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":

\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]

\displaystyle \frac{d}{dh} h^2 = 2h

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:

\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]

\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle \frac{d^2}{dh^2} h^2 = 2

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

∴ we have <em>evaluated</em> the given limit.

---

Learn more about limits: brainly.com/question/27438198

---

You might be interested in
The population of bacteria in a culture doubles every 14 hours. How long will it take for
Snezhnost [94]

Answer:  22 hours 11 minutes

<u>Step-by-step explanation:</u>

P=P_o\cdot e^{(kt)}\\\\\text{Since the initial population is doubled in 14 hours, then:}\\2P_o=P_o\cdot e^{k\cdot 14}\\2=e^{14k}\\ln\ 2=ln\ e^{14k}\\ln\ 2=14k\\\\\dfrac{ln\ 2}{14}=k\\\\0.0495=k\\\\\\\text{Now that the k-value has been determined, we can find the time when the}\\\text{population is tripled:}\\3P_o=P_o\cdot e^{0.0495t}\\3=e^{0.0495t}\\ln\ 3=ln\ e^{0.0495t}\\ln\ 3=0.0495t\\\\\dfrac{ln\ 3}{0.0495}=5\\\\22.19=t\\\\22\ hrs +0.19\ hrs

22\ hours + \bigg[\dfrac{19}{100}=\dfrac{x}{60}\bigg]\\\\22\ hours + 11\ minutes

4 0
3 years ago
To any of my friends who see this, sorry I haven't been on in a while :(
Tema [17]
The answer is 4 for the missing value
7 0
3 years ago
Read 2 more answers
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
Ksenya-84 [330]

Answer:

B. 600,000 (1.15)^{n-1}

Step-by-step explanation:

The <em>n-th</em> term of a geometric sequence with initial value a and common ratio r can be determined by multiplying the first term of the sequence (i.e. initial value a) by r^{n-1}.

The first term (i.e. initial value a) is 600,000.

The common ratio r can be calculated by dividing any two consecutive terms in the sequence:

r = 690,000/600,000 = 1.15 <em>or</em> r = 793,500/690,000 = 1.15

Thus, we get the answer:

the explicit rule that can be used to determine the value of the art collection n years after that is 600,000 (1.15)^{n-1}

6 0
3 years ago
What is the surface area for this rectangular pyramid 16in 16in 17in
vesna_86 [32]
If it’s 16 for base length and 16 for base width and 17 for height then this is the answer

8 0
3 years ago
Read 2 more answers
HELP WILL GIVE BRAINLIEST SHOW WORK LOOK AT IMAGE
ycow [4]
The correct answer is x = 6
5 0
3 years ago
Other questions:
  • Find the average of 1/2, 1/3, 1/4
    12·1 answer
  • (6.7 x 10 5) – (2.3 x 102) =
    9·2 answers
  • Please help!! giving 20 points !<br><br> What is the area of this rectangle?
    10·2 answers
  • 8 and 8x are like terms?
    10·2 answers
  • Myra multiplies 5 integers. The product is negative. AT MOST, how many of the integers could be negative? A) 1 B) 3 C) 4 D) 5
    5·1 answer
  • Whats 13% of 80<br> plz answer correctly
    15·2 answers
  • A rectangular area is to be enclosed using an existing
    6·1 answer
  • What is the domain and range of this linear equation 6x+12y=48​
    14·1 answer
  • What is the sum of the interior angles of the polygon pictured below?
    15·1 answer
  • The altitude of an airplane is decreasing at a rate of 42 feet per second. What is the change in altitude of the airplane over a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!