The last 2 options are correct
Answer:
50 gluten-free cupcakes and 100 regular cupcakes.
Step-by-step explanation:
Let's define the variables:
R = number of regular cupcakes sold
G = number of gluten-free cupcakes sold
The total amount of money raised then is:
M = R*$2.00 + G*$3.00
We also know that:
The number of regular cupcakes sold was 2 times the number of gluten-free cupcakes sold.
then:
R = 2*G
And we also know that the amount of money raised is $350
Then we have the equations:
R = 2*G
R*$2.00 + G*$3.00 = $350
We can replace the first equation into the second one, so we have only one variable:
(2*G)*$2.00 + G*$3.00 = $350
Now we can solve this for G.
G*$4.00 + G*$3.00 = $350
G*$7.00 = $350
G = $350/$7.00 = 50
G = 50
50 gluten-free cupcakes where sold.
And using the equation:
R = 2*G = 2*50 = 100
We can conclude that 100 regular cupcakes were sold.
Answer:
In the first week, Micah bought 11 gallons of gas.
In the second week, Micah bought 8 gallons of gas.
Step-by-step explanation:
Given:
First week
x gallons of gas at $2.39 per gallon
x gallons = $2.39x
Second week
3 fewer gallons of gas than the first week at $2.49 per gallon
x - 3 gallons = $2.49(x-3)
Total spent = $46.21
$2.39x + $2.49(x-3) = $46.21
2.39x + 2.49x - 7.47 = 46.21
4.88x - 7.47 = 46.21
Add 7.47 to both sides
4.88x - 7.47 + 7.47 = 46.21 + 7.47
4.88x = 53.68
Divide both sides by 4.88
x = 53.68/4.88
= 11
x = 11
First week = x = 11 gallons
Second week
= x - 3
= 11-3
= 8 gallons
Therefore,
In the first week, Micah bought 11 gallons of gas.
In the second week, Micah bought 8 gallons of gas.