1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
3 years ago
15

Write the explicit rule for the given the sequence: 125, 25, 5, ...

Mathematics
2 answers:
Korvikt [17]3 years ago
6 0

Answer:

An=125(1/5)^n-1

Step-by-step explanation:

r=common ratio

A1= first term in the sequence

I hope this helps some

skelet666 [1.2K]3 years ago
4 0

Answer:

an=a1(r)^(n-1)

a1=first erm

r=common ratio

firs term is -5

we times each term by 5 to get next term so r=5

is the explicit formula

hope this helped

You might be interested in
Math question!<br><br> <img src="https://tex.z-dn.net/?f=%20%5Cint%5C%20%7B%20%5Csqrt%7Btan%28x%29%7D%20%7D%20%5C%2C%20dx%20" id
stira [4]
Solution: \int\limits \:  \sqrt{tan(x)} \: dx
<span>1) pass: make the replacement
</span>y =  \sqrt{tan(x)} = tan(x)^ \frac{1}{2}
dy =  \frac{1}{2} *(tan\:x)^{- \frac{1}{2}} * sec^2x\:dx
2dy =  \frac{1}{y}*(tan^2*x+1)dx
2ydy = (y^4+1)dx
dx =  \frac{2y}{y^4+1} dy

2) pass: <span>We substitute in the integral of the statement
</span>I =  \int\limits  \sqrt{tanx} \: dx
I =  \int\limits \:y*  \frac{2y}{y^4+1} dy
I =  \int\limits\: \frac{2y^2}{y^4+1} dy

3) pass: <span>Using the Gauss Lemma, we will factor the polynomial (y⁴ + 1) knowing that there are no real roots, so we will directly try to factorize into two polynomials of degree 2:
</span>
y^4+1 = (y^2+ay+1)(y^2+cy+1)
y^4+1 = y^4+(a+c)y^3 + (ac+2)y^2+(a+c)y+1
<span>Make the system linear, to find the values ​​of "a" and "c".
</span>\left \{ {{a+c=0} \atop {ac+2=0}} \right.
a+c = 0 \:\to c=-a
ac+2=0\to ac = -2\to a*(-a) = -2\to -a^2 = -2\to a =\sqrt{2}
a+c = 0 \:\to c=-a\to c = - \sqrt{2}
We have:
(y^4+1)= (y^2+ \sqrt{2y} +1)(y^2- \sqrt{2y} +1)

4) pass: <span>We will use the partial fractions method, using the fraction from within the integral:
</span>\frac{2y^2}{y^4+1} =  \frac{Ay+B}{y^2+ \sqrt{2y}+1 } + \frac{Cy+D}{y^2- \sqrt{2y} +1}
=  \frac{(A+C)y^3+(- \sqrt{2}A+B+ \sqrt{2}C+D)y^2+(A- \sqrt{2}B+C+ \sqrt{2}D)y+(B+D)  }{y^4+1}

\longrightarrow   \left \{ {{A+C=0\to A=-C} \atop { -\sqrt{2}(A-C)+(B+D)=2 }} \right.
-\sqrt{2}(A-C)+(B+D)=2 \to - \sqrt{2} *2A+0=2\to A = - \frac{1}{ \sqrt{2} }
A+C=0\to C=-A\to C = - (- \frac{1}{ \sqrt{2} } )\to C =  \frac{1}{ \sqrt{2} }
(A+C)+ \sqrt{2} (D-B)=0\to 0+ \sqrt{2} (D-B)=0 \to B=D=0
B+D=0

5)pass: Adopt what was used above:

I =  \int\limits  \frac{ -\frac{1}{ \sqrt{2} }y }{y^2+ \sqrt{2}y+1 } dy+ \int\limits \frac{ \frac{1}{ \sqrt{2} }y }{y^2- \sqrt{2}y+1 } dy

I = - \frac{1}{ \sqrt{2} }  \underbrace{\int\limits \frac{y}{y^2+ \sqrt{2y}+1 }dy }_{I_1}+ \frac{1}{ \sqrt{2} } \underbrace{\int\limits \frac{y}{y^2- \sqrt{2y}+1 }dy }_{I_2}

6) pass: <span>Now, solve it separately
</span>
I_1 =  \int\limits \frac{y}{y^2+ \sqrt{2y}+1 }dy
2I_1 =  \int\limits\frac{2y}{y^2+ \sqrt{2y}+1 }dy =  \int\limits  \frac{2y- \sqrt{2}+ \sqrt{2}  }{y^2+ \sqrt{2y}+1 } dy
2I_1 = \int\limits\frac{2y+ \sqrt{2} }{y^2+ \sqrt{2y}+1 }dy - \int\limits\frac{ \sqrt{2} }{y^2+ \sqrt{2y}+1 }dy
2I_1 = ln|y^2+ \sqrt{2}y+1| -   \sqrt{2}  \int\limits  \frac{1}{(y \sqrt{2}+1)^2+1 }dy
\boxed{I_1 =  \frac{1}{2} ln|y^2+ \sqrt{2} y+1| - \frac{ \sqrt{2} }{2}  arctan(y \sqrt{2}+1 )}

and

I_2 = \int\limits \frac{y}{y^2- \sqrt{2y}+1 }dy
2I_2 = \int\limits\frac{2y}{y^2- \sqrt{2y}+1 }dy = \int\limits \frac{2y- \sqrt{2}+ \sqrt{2} }{y^2+ \sqrt{2y}+1 } dy
2I_2 = \int\limits\frac{2y- \sqrt{2} }{y^2- \sqrt{2y}+1 }dy - \int\limits\frac{ \sqrt{2} }{y^2- \sqrt{2y}+1 }dy
2I_2 = ln|y^2- \sqrt{2}y+1| + \sqrt{2} \int\limits \frac{1}{(y \sqrt{2}-1)^2+1 }dy
\boxed{I_2 = \frac{1}{2} ln|y^2- \sqrt{2} y+1| + \frac{ \sqrt{2} }{2} arctan(y \sqrt{2}-1 )}

7) pass: Let's use the expression of I

I = - \frac{I_1}{ \sqrt{2} } + \frac{I_2}{ \sqrt{2} }

I = -   \frac{ \frac{1}{2}ln|y^2+ \sqrt{2}y+1|- \frac{ \sqrt{2} }{2}arctan(y \sqrt{2} + 1)   }{ \sqrt{2} } + \frac{ \frac{1}{2}ln|y^2- \sqrt{2}y+1|+ \frac{ \sqrt{2} }{2}arctan(y \sqrt{2} - 1)   }{ \sqrt{2} }
I = - \frac{1}{2 \sqrt{2} } ln|y^2+ \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2} +1)+
+\frac{1}{2 \sqrt{2} } ln|y^2- \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2}-1)

<span>8) pass: Now, returning to the expression as a function of x, we finally arrive at the final answer:
</span>
I = - \frac{1}{2 \sqrt{2} } ln|y^2+ \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2} +1)+
+\frac{1}{2 \sqrt{2} } ln|y^2- \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2}-1)
I = - \frac{1}{2 \sqrt{2} } ln|( \sqrt{tan\:x})^2+ \sqrt{2}( \sqrt{tan\:x}) +1| +  \frac{1}{ \sqrt{2} } arctan(( \sqrt{tan\:x}) \sqrt{2} +1
+\frac{1}{2 \sqrt{2} } ln|( \sqrt{tan\:x})^2- \sqrt{2}( \sqrt{tan\:x}) +1| + \frac{1}{ \sqrt{2} } arctan(( \sqrt{tan\:x}) \sqrt{2} -1

Answer:

\boxed{I = - \frac{1}{2 \sqrt{2} } ln | ( \ tan\:x+\sqrt{2\:tan\:x} +1| +  \frac{1}{ \sqrt{2} }arctan( \sqrt{2\:tan\:x}  +1) +}
\boxed{+ \frac{1}{2 \sqrt{2} } ln | ( \ tan\:x-\sqrt{2\:tan\:x} +1| +  \frac{1}{ \sqrt{2} }arctan( \sqrt{2\:tan\:x}  -1) +C}} \end{array}}\qquad\quad\checkmark







<span>



</span>
4 0
4 years ago
Which expressions have a value equal to 22? Select all that apply.
xz_007 [3.2K]

18+4

Step-by-step explanation:

4 0
3 years ago
If the polynomial x^5 − 10^5 can be split as the product of the polynomials
AfilCa [17]
Hello,

x^5-10^5=(x-10)(x^4+10x^3+100x^2+1000x+10000)
=========================================
7 0
3 years ago
Read 2 more answers
Q. Saline IV fluid bags cost $64.20 for 24, 1000 ml bags from one supplier. A new supplier sells 500 ml bags for $2 each
Trava [24]

Answer:

The 1000 ml bags, over $3000

Step-by-step explanation:

First, determine how many bags you need from each vendor. Then find the cost per bag with each vendor. Remember, the bags are reported to be only half full when discarded, therefore you need the equivalent of 5,000 1,000 ml bags and 5,000 500ml bags.

4 0
3 years ago
?????????????????help???
Otrada [13]
They are not equivalent fractions.
3 0
3 years ago
Read 2 more answers
Other questions:
  • Given a pre-image and an image, explain how you could use transformation to show they are congruent?
    7·2 answers
  • Help me please 5y+3y=-11
    10·1 answer
  • Show me how to write370,519 in expanded form
    12·1 answer
  • 30% of the cars sold by Car Dealer A were blue. 50% of the cars sold by Dealer B were blue. Which statement must be true?
    13·1 answer
  • A cable is 20 decimeters long. how long is the cable in meters?
    5·2 answers
  • What should Equation B be multiplied by in order to eliminate the y variable in the system?
    10·1 answer
  • How can you solve 19+6 using only equations to model your thinking(Grade 2) Explain briefly
    10·1 answer
  • Kat has 19 coins, all quarters and dimes, that are worth a total of $4. The system of equations that can be used to find the num
    14·2 answers
  • А
    8·1 answer
  • What function equation is represented by the graph?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!