1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yKpoI14uk [10]
4 years ago
13

Math question!

="TexFormula1" title=" \int\ { \sqrt{tan(x)} } \, dx " alt=" \int\ { \sqrt{tan(x)} } \, dx " align="absmiddle" class="latex-formula">

Please show your work!
Mathematics
1 answer:
stira [4]4 years ago
4 0
Solution: \int\limits \:  \sqrt{tan(x)} \: dx
<span>1) pass: make the replacement
</span>y =  \sqrt{tan(x)} = tan(x)^ \frac{1}{2}
dy =  \frac{1}{2} *(tan\:x)^{- \frac{1}{2}} * sec^2x\:dx
2dy =  \frac{1}{y}*(tan^2*x+1)dx
2ydy = (y^4+1)dx
dx =  \frac{2y}{y^4+1} dy

2) pass: <span>We substitute in the integral of the statement
</span>I =  \int\limits  \sqrt{tanx} \: dx
I =  \int\limits \:y*  \frac{2y}{y^4+1} dy
I =  \int\limits\: \frac{2y^2}{y^4+1} dy

3) pass: <span>Using the Gauss Lemma, we will factor the polynomial (y⁴ + 1) knowing that there are no real roots, so we will directly try to factorize into two polynomials of degree 2:
</span>
y^4+1 = (y^2+ay+1)(y^2+cy+1)
y^4+1 = y^4+(a+c)y^3 + (ac+2)y^2+(a+c)y+1
<span>Make the system linear, to find the values ​​of "a" and "c".
</span>\left \{ {{a+c=0} \atop {ac+2=0}} \right.
a+c = 0 \:\to c=-a
ac+2=0\to ac = -2\to a*(-a) = -2\to -a^2 = -2\to a =\sqrt{2}
a+c = 0 \:\to c=-a\to c = - \sqrt{2}
We have:
(y^4+1)= (y^2+ \sqrt{2y} +1)(y^2- \sqrt{2y} +1)

4) pass: <span>We will use the partial fractions method, using the fraction from within the integral:
</span>\frac{2y^2}{y^4+1} =  \frac{Ay+B}{y^2+ \sqrt{2y}+1 } + \frac{Cy+D}{y^2- \sqrt{2y} +1}
=  \frac{(A+C)y^3+(- \sqrt{2}A+B+ \sqrt{2}C+D)y^2+(A- \sqrt{2}B+C+ \sqrt{2}D)y+(B+D)  }{y^4+1}

\longrightarrow   \left \{ {{A+C=0\to A=-C} \atop { -\sqrt{2}(A-C)+(B+D)=2 }} \right.
-\sqrt{2}(A-C)+(B+D)=2 \to - \sqrt{2} *2A+0=2\to A = - \frac{1}{ \sqrt{2} }
A+C=0\to C=-A\to C = - (- \frac{1}{ \sqrt{2} } )\to C =  \frac{1}{ \sqrt{2} }
(A+C)+ \sqrt{2} (D-B)=0\to 0+ \sqrt{2} (D-B)=0 \to B=D=0
B+D=0

5)pass: Adopt what was used above:

I =  \int\limits  \frac{ -\frac{1}{ \sqrt{2} }y }{y^2+ \sqrt{2}y+1 } dy+ \int\limits \frac{ \frac{1}{ \sqrt{2} }y }{y^2- \sqrt{2}y+1 } dy

I = - \frac{1}{ \sqrt{2} }  \underbrace{\int\limits \frac{y}{y^2+ \sqrt{2y}+1 }dy }_{I_1}+ \frac{1}{ \sqrt{2} } \underbrace{\int\limits \frac{y}{y^2- \sqrt{2y}+1 }dy }_{I_2}

6) pass: <span>Now, solve it separately
</span>
I_1 =  \int\limits \frac{y}{y^2+ \sqrt{2y}+1 }dy
2I_1 =  \int\limits\frac{2y}{y^2+ \sqrt{2y}+1 }dy =  \int\limits  \frac{2y- \sqrt{2}+ \sqrt{2}  }{y^2+ \sqrt{2y}+1 } dy
2I_1 = \int\limits\frac{2y+ \sqrt{2} }{y^2+ \sqrt{2y}+1 }dy - \int\limits\frac{ \sqrt{2} }{y^2+ \sqrt{2y}+1 }dy
2I_1 = ln|y^2+ \sqrt{2}y+1| -   \sqrt{2}  \int\limits  \frac{1}{(y \sqrt{2}+1)^2+1 }dy
\boxed{I_1 =  \frac{1}{2} ln|y^2+ \sqrt{2} y+1| - \frac{ \sqrt{2} }{2}  arctan(y \sqrt{2}+1 )}

and

I_2 = \int\limits \frac{y}{y^2- \sqrt{2y}+1 }dy
2I_2 = \int\limits\frac{2y}{y^2- \sqrt{2y}+1 }dy = \int\limits \frac{2y- \sqrt{2}+ \sqrt{2} }{y^2+ \sqrt{2y}+1 } dy
2I_2 = \int\limits\frac{2y- \sqrt{2} }{y^2- \sqrt{2y}+1 }dy - \int\limits\frac{ \sqrt{2} }{y^2- \sqrt{2y}+1 }dy
2I_2 = ln|y^2- \sqrt{2}y+1| + \sqrt{2} \int\limits \frac{1}{(y \sqrt{2}-1)^2+1 }dy
\boxed{I_2 = \frac{1}{2} ln|y^2- \sqrt{2} y+1| + \frac{ \sqrt{2} }{2} arctan(y \sqrt{2}-1 )}

7) pass: Let's use the expression of I

I = - \frac{I_1}{ \sqrt{2} } + \frac{I_2}{ \sqrt{2} }

I = -   \frac{ \frac{1}{2}ln|y^2+ \sqrt{2}y+1|- \frac{ \sqrt{2} }{2}arctan(y \sqrt{2} + 1)   }{ \sqrt{2} } + \frac{ \frac{1}{2}ln|y^2- \sqrt{2}y+1|+ \frac{ \sqrt{2} }{2}arctan(y \sqrt{2} - 1)   }{ \sqrt{2} }
I = - \frac{1}{2 \sqrt{2} } ln|y^2+ \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2} +1)+
+\frac{1}{2 \sqrt{2} } ln|y^2- \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2}-1)

<span>8) pass: Now, returning to the expression as a function of x, we finally arrive at the final answer:
</span>
I = - \frac{1}{2 \sqrt{2} } ln|y^2+ \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2} +1)+
+\frac{1}{2 \sqrt{2} } ln|y^2- \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2}-1)
I = - \frac{1}{2 \sqrt{2} } ln|( \sqrt{tan\:x})^2+ \sqrt{2}( \sqrt{tan\:x}) +1| +  \frac{1}{ \sqrt{2} } arctan(( \sqrt{tan\:x}) \sqrt{2} +1
+\frac{1}{2 \sqrt{2} } ln|( \sqrt{tan\:x})^2- \sqrt{2}( \sqrt{tan\:x}) +1| + \frac{1}{ \sqrt{2} } arctan(( \sqrt{tan\:x}) \sqrt{2} -1

Answer:

\boxed{I = - \frac{1}{2 \sqrt{2} } ln | ( \ tan\:x+\sqrt{2\:tan\:x} +1| +  \frac{1}{ \sqrt{2} }arctan( \sqrt{2\:tan\:x}  +1) +}
\boxed{+ \frac{1}{2 \sqrt{2} } ln | ( \ tan\:x-\sqrt{2\:tan\:x} +1| +  \frac{1}{ \sqrt{2} }arctan( \sqrt{2\:tan\:x}  -1) +C}} \end{array}}\qquad\quad\checkmark







<span>



</span>
You might be interested in
A recipe requires 3/4 cups of sugar for every 14 cookies how many cups of sugar will be needed to bake 168 cookies
MrMuchimi

Answer:

9

Step-by-step explanation:

ratio problem

3/4 sugar/14 cookies = x sugar/168

126 = 14x

x = 9

5 0
4 years ago
Read 2 more answers
Hi. I need help with these questions.<br> See image for question.
Charra [1.4K]

Answer:

(a) P(1) = 3

(b) P(-2) = 15

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Function Notation

Step-by-step explanation:

<u>Step 1: Define</u>

P(x) = x³ + 4x² - 3x + 1

P(1) is x = 1

P(-2) is x = -2

<u>Step 2: Evaluate</u>

<em>P(1)</em>

  1. Substitute:                    P(1) = 1³ + 4(1)² - 3(1) + 1
  2. Exponents:                   P(1) = 1 + 4(1) - 3(1) + 1
  3. Multiply:                        P(1) = 1 + 4 - 3 + 1
  4. Add:                              P(1) = 5 - 3 + 1
  5. Subtract:                       P(1) = 2 + 1
  6. Add:                              P(1) = 3

<em>P(-2)</em>

  1. Substitute:                    P(-2) = (-2)³ + 4(-2)² - 3(-2) + 1
  2. Exponents:                   P(-2) = -8 + 4(4) - 3(-2) + 1
  3. Multiply:                        P(-2) = -8 + 16 + 6 + 1
  4. Add:                              P(-2) = 8 + 6 + 1
  5. Add:                              P(-2) = 14 + 1
  6. Add:                              P(-2) = 15
4 0
3 years ago
Read 2 more answers
What is the equation of the line perpendicular to 3x+4y=12 and containing the point (6,-2)
tester [92]

3x+4y=12

4y = - 3x + 12

 y = -3/4 x + 3; This line has slope equal - 3/4

Perpendicular lines, slope is opposite and reciprocal so slope of new line = 4/3

Passing point (6 , -2)

y + 2 = 4/3(x - 6)

y + 2 = 4/3 x - 8

y = 4/3 x - 10

Answer

Equation: y = 4/3 x - 10

6 0
3 years ago
Please help me with #13.
Contact [7]
No , because there are more ounces in a tp then there are pounds. hoped I helped ignore the one comment from me.
4 0
3 years ago
Complete the sentences regarding demand. The demand for ________ goods increases with a decrease in income, whereas _________ ar
Dominik [7]

Answer:

Inferior, Public

Step-by-step explanation:

Complete the sentences regarding demand. The demand for inferior goods increases with a decrease in income, whereas public are goods that cannot be bought or sold.

8 0
4 years ago
Read 2 more answers
Other questions:
  • On a map. Haven Rd and Pine Rd are parallel, and Mills Rd is a transversal. How can the
    6·1 answer
  • find the approximate side length of each Square figure to the nearest whole unit immoral with an area of 18 M Square
    12·1 answer
  • Trig question please save mee simplify each expression to one trig function or number
    11·2 answers
  • Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean u=207 and standard d
    6·1 answer
  • Please help! Will mark brainliest!
    9·1 answer
  • If a 12 - sided regular polygon rotates about its center, at which angle of rotation will the image of the polygon coincide with
    11·1 answer
  • A jar contains 2 pink, 6 red, and 4 blue marbles. If you pick one marble without looking, what is the probability that the marbl
    7·1 answer
  • 7.
    9·2 answers
  • (FILL IN THE BLANK)
    6·1 answer
  • LITRALLY HELP PLS
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!