1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yKpoI14uk [10]
4 years ago
13

Math question!

="TexFormula1" title=" \int\ { \sqrt{tan(x)} } \, dx " alt=" \int\ { \sqrt{tan(x)} } \, dx " align="absmiddle" class="latex-formula">

Please show your work!
Mathematics
1 answer:
stira [4]4 years ago
4 0
Solution: \int\limits \:  \sqrt{tan(x)} \: dx
<span>1) pass: make the replacement
</span>y =  \sqrt{tan(x)} = tan(x)^ \frac{1}{2}
dy =  \frac{1}{2} *(tan\:x)^{- \frac{1}{2}} * sec^2x\:dx
2dy =  \frac{1}{y}*(tan^2*x+1)dx
2ydy = (y^4+1)dx
dx =  \frac{2y}{y^4+1} dy

2) pass: <span>We substitute in the integral of the statement
</span>I =  \int\limits  \sqrt{tanx} \: dx
I =  \int\limits \:y*  \frac{2y}{y^4+1} dy
I =  \int\limits\: \frac{2y^2}{y^4+1} dy

3) pass: <span>Using the Gauss Lemma, we will factor the polynomial (y⁴ + 1) knowing that there are no real roots, so we will directly try to factorize into two polynomials of degree 2:
</span>
y^4+1 = (y^2+ay+1)(y^2+cy+1)
y^4+1 = y^4+(a+c)y^3 + (ac+2)y^2+(a+c)y+1
<span>Make the system linear, to find the values ​​of "a" and "c".
</span>\left \{ {{a+c=0} \atop {ac+2=0}} \right.
a+c = 0 \:\to c=-a
ac+2=0\to ac = -2\to a*(-a) = -2\to -a^2 = -2\to a =\sqrt{2}
a+c = 0 \:\to c=-a\to c = - \sqrt{2}
We have:
(y^4+1)= (y^2+ \sqrt{2y} +1)(y^2- \sqrt{2y} +1)

4) pass: <span>We will use the partial fractions method, using the fraction from within the integral:
</span>\frac{2y^2}{y^4+1} =  \frac{Ay+B}{y^2+ \sqrt{2y}+1 } + \frac{Cy+D}{y^2- \sqrt{2y} +1}
=  \frac{(A+C)y^3+(- \sqrt{2}A+B+ \sqrt{2}C+D)y^2+(A- \sqrt{2}B+C+ \sqrt{2}D)y+(B+D)  }{y^4+1}

\longrightarrow   \left \{ {{A+C=0\to A=-C} \atop { -\sqrt{2}(A-C)+(B+D)=2 }} \right.
-\sqrt{2}(A-C)+(B+D)=2 \to - \sqrt{2} *2A+0=2\to A = - \frac{1}{ \sqrt{2} }
A+C=0\to C=-A\to C = - (- \frac{1}{ \sqrt{2} } )\to C =  \frac{1}{ \sqrt{2} }
(A+C)+ \sqrt{2} (D-B)=0\to 0+ \sqrt{2} (D-B)=0 \to B=D=0
B+D=0

5)pass: Adopt what was used above:

I =  \int\limits  \frac{ -\frac{1}{ \sqrt{2} }y }{y^2+ \sqrt{2}y+1 } dy+ \int\limits \frac{ \frac{1}{ \sqrt{2} }y }{y^2- \sqrt{2}y+1 } dy

I = - \frac{1}{ \sqrt{2} }  \underbrace{\int\limits \frac{y}{y^2+ \sqrt{2y}+1 }dy }_{I_1}+ \frac{1}{ \sqrt{2} } \underbrace{\int\limits \frac{y}{y^2- \sqrt{2y}+1 }dy }_{I_2}

6) pass: <span>Now, solve it separately
</span>
I_1 =  \int\limits \frac{y}{y^2+ \sqrt{2y}+1 }dy
2I_1 =  \int\limits\frac{2y}{y^2+ \sqrt{2y}+1 }dy =  \int\limits  \frac{2y- \sqrt{2}+ \sqrt{2}  }{y^2+ \sqrt{2y}+1 } dy
2I_1 = \int\limits\frac{2y+ \sqrt{2} }{y^2+ \sqrt{2y}+1 }dy - \int\limits\frac{ \sqrt{2} }{y^2+ \sqrt{2y}+1 }dy
2I_1 = ln|y^2+ \sqrt{2}y+1| -   \sqrt{2}  \int\limits  \frac{1}{(y \sqrt{2}+1)^2+1 }dy
\boxed{I_1 =  \frac{1}{2} ln|y^2+ \sqrt{2} y+1| - \frac{ \sqrt{2} }{2}  arctan(y \sqrt{2}+1 )}

and

I_2 = \int\limits \frac{y}{y^2- \sqrt{2y}+1 }dy
2I_2 = \int\limits\frac{2y}{y^2- \sqrt{2y}+1 }dy = \int\limits \frac{2y- \sqrt{2}+ \sqrt{2} }{y^2+ \sqrt{2y}+1 } dy
2I_2 = \int\limits\frac{2y- \sqrt{2} }{y^2- \sqrt{2y}+1 }dy - \int\limits\frac{ \sqrt{2} }{y^2- \sqrt{2y}+1 }dy
2I_2 = ln|y^2- \sqrt{2}y+1| + \sqrt{2} \int\limits \frac{1}{(y \sqrt{2}-1)^2+1 }dy
\boxed{I_2 = \frac{1}{2} ln|y^2- \sqrt{2} y+1| + \frac{ \sqrt{2} }{2} arctan(y \sqrt{2}-1 )}

7) pass: Let's use the expression of I

I = - \frac{I_1}{ \sqrt{2} } + \frac{I_2}{ \sqrt{2} }

I = -   \frac{ \frac{1}{2}ln|y^2+ \sqrt{2}y+1|- \frac{ \sqrt{2} }{2}arctan(y \sqrt{2} + 1)   }{ \sqrt{2} } + \frac{ \frac{1}{2}ln|y^2- \sqrt{2}y+1|+ \frac{ \sqrt{2} }{2}arctan(y \sqrt{2} - 1)   }{ \sqrt{2} }
I = - \frac{1}{2 \sqrt{2} } ln|y^2+ \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2} +1)+
+\frac{1}{2 \sqrt{2} } ln|y^2- \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2}-1)

<span>8) pass: Now, returning to the expression as a function of x, we finally arrive at the final answer:
</span>
I = - \frac{1}{2 \sqrt{2} } ln|y^2+ \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2} +1)+
+\frac{1}{2 \sqrt{2} } ln|y^2- \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2}-1)
I = - \frac{1}{2 \sqrt{2} } ln|( \sqrt{tan\:x})^2+ \sqrt{2}( \sqrt{tan\:x}) +1| +  \frac{1}{ \sqrt{2} } arctan(( \sqrt{tan\:x}) \sqrt{2} +1
+\frac{1}{2 \sqrt{2} } ln|( \sqrt{tan\:x})^2- \sqrt{2}( \sqrt{tan\:x}) +1| + \frac{1}{ \sqrt{2} } arctan(( \sqrt{tan\:x}) \sqrt{2} -1

Answer:

\boxed{I = - \frac{1}{2 \sqrt{2} } ln | ( \ tan\:x+\sqrt{2\:tan\:x} +1| +  \frac{1}{ \sqrt{2} }arctan( \sqrt{2\:tan\:x}  +1) +}
\boxed{+ \frac{1}{2 \sqrt{2} } ln | ( \ tan\:x-\sqrt{2\:tan\:x} +1| +  \frac{1}{ \sqrt{2} }arctan( \sqrt{2\:tan\:x}  -1) +C}} \end{array}}\qquad\quad\checkmark







<span>



</span>
You might be interested in
5. What is the equation in slope-intercept form for the graph of the line shown?
zhuklara [117]

Answer:

5. \: y =  - 2x - 1 \\ 6. \: y - 4 = 3(x + 2) \\ 7. \: the \: cost \: to \: rent \: the \: game \: center

3 0
3 years ago
Why is understanding the terms of a contract important for both parties involved?
Ad libitum [116K]
A) <span>Understanding the terms of a contract is important because a person must be certain of the obligations towards the other party, and must also be aware of penalties incurred if those obligations are not met.</span>
6 0
3 years ago
Read 2 more answers
Maria will spin the arrow on the spinner 2 times. What is the probability that the arrow will stop on the same letter twice?
tia_tia [17]
If there are 9 sides, then the chance of it landing on the same letter twice, after spinning it would be 1/9.

I hope this helps. Let me know if there is a different  amount of sides to the spinner.

7 0
3 years ago
Read 2 more answers
Can someone help me please ? Thanks!
notka56 [123]
Use pythagorean theorem for all of them
a. 3, 4, 5
3^2+4^2?5^2
9+16?25
25=25
right 

b. 5, 6, 7
5^2+6^2=7^2
25+36=49
61>49
acute

c. 64+81=144
145>144
acute

hope this helps!
6 0
4 years ago
Read 2 more answers
A sequence is shown.
marin [14]

Answer:

Step-by-step explanation:

The given sequence of numbers is increasing in geometric progression. The consecutive terms differ by a common ratio, r

Common ratio = 6/3 = 12/6 = 2

The formula for determining the nth term of a geometric progression is expressed as

Tn = ar^(n - 1)

Where

a represents the first term of the sequence.

r represents the common ratio.

n represents the number of terms.

From the information given,

a = 3

r = 2

The function, f(n), representing the nth term of the sequence is

f(n) = 3 × 2^(n - 1)

6 0
4 years ago
Other questions:
  • What is the difference between a product and a multiple?
    10·2 answers
  • Add the following polynomials
    9·2 answers
  • during last week's storm,2.15inches of rain fell on monday and 1.68 inches of rain fell on tuesday. what was the total amount of
    9·1 answer
  • George usually takes 1.5 hours to mow his neighbor’s grass and trim the bushes. Today he has only 0.75 of the usual amount of ti
    14·2 answers
  • What is x in 2x + 5x​
    7·1 answer
  • The circle above has a radius of 6 cm. What is the area of the circle? Use = 3.14.
    13·2 answers
  • Three to the power of three minus seven plus ten
    14·2 answers
  • How do you solve this problem ?
    7·2 answers
  • 1
    11·2 answers
  • Let A x B = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)} then, find A, B, n(A), n(B).​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!